{"title":"The neural ensembles activated by propofol and isoflurane anesthesia across the whole mouse brain.","authors":"Qian Zhang, Jin Ke, Guangfu Cui, Shen Qian, Weixin Qian, Sun-Wook Moon, Yanyan Sun, Tianwen Huang, Zaisheng Qin","doi":"10.1016/j.neulet.2024.138080","DOIUrl":null,"url":null,"abstract":"<p><p>General anesthesia has been widely used in surgical procedures. Propofol and isoflurane are the most commonly used injectable and inhaled anesthetics, respectively. The various adverse effects induced by propofol and isoflurane are highly associated with the anesthetic-dependent change of brain activities. In this work, we aim to delineate a brain-wide neuronal activity landscape of injectable versus inhaled anesthetics to understand the neural basis underlying the different physiological effects induced by these two major types of anesthetics. Through detailed scanning of the whole mouse brain subjected to propofol or isoflurane anesthesia, in total, we identified 17 subcortical regions, 3 of which (anterodorsal preoptic nucleus, ADP; lateral habenular, LHb; inferior olivary nucleus, ION) were specifically activated by propofol, and 3 (ventral part of the lateral septum, LSV; the intermediate part of the lateral septum, LSI; the solitary tract nucleus, Sol) were specifically activated by isoflurane, with the remaining 11 were activated by both two anesthetics. Moreover, within the 17 brain regions, ADP, SubCV (subcoeruleus nucleus, ventral part), PCRtA (parvicellular reticular nucleus, alpba part) and ION were newly identified that activated by propofol or isoflurane, respectively. By using Targeted Recombination in Active Populations (TRAP) technique, we further showed that propofol and isoflurane largely activate the same group of neurons in supraoptic nucleus (SON), but activate different groups of neurons in central amygdala (CeA). Our results reveals the neural ensembles activated by injectable and inhaled anesthetics, and provides detailed anatomical references for future studies on general anesthesia.</p>","PeriodicalId":19290,"journal":{"name":"Neuroscience Letters","volume":" ","pages":"138080"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neulet.2024.138080","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
General anesthesia has been widely used in surgical procedures. Propofol and isoflurane are the most commonly used injectable and inhaled anesthetics, respectively. The various adverse effects induced by propofol and isoflurane are highly associated with the anesthetic-dependent change of brain activities. In this work, we aim to delineate a brain-wide neuronal activity landscape of injectable versus inhaled anesthetics to understand the neural basis underlying the different physiological effects induced by these two major types of anesthetics. Through detailed scanning of the whole mouse brain subjected to propofol or isoflurane anesthesia, in total, we identified 17 subcortical regions, 3 of which (anterodorsal preoptic nucleus, ADP; lateral habenular, LHb; inferior olivary nucleus, ION) were specifically activated by propofol, and 3 (ventral part of the lateral septum, LSV; the intermediate part of the lateral septum, LSI; the solitary tract nucleus, Sol) were specifically activated by isoflurane, with the remaining 11 were activated by both two anesthetics. Moreover, within the 17 brain regions, ADP, SubCV (subcoeruleus nucleus, ventral part), PCRtA (parvicellular reticular nucleus, alpba part) and ION were newly identified that activated by propofol or isoflurane, respectively. By using Targeted Recombination in Active Populations (TRAP) technique, we further showed that propofol and isoflurane largely activate the same group of neurons in supraoptic nucleus (SON), but activate different groups of neurons in central amygdala (CeA). Our results reveals the neural ensembles activated by injectable and inhaled anesthetics, and provides detailed anatomical references for future studies on general anesthesia.
期刊介绍:
Neuroscience Letters is devoted to the rapid publication of short, high-quality papers of interest to the broad community of neuroscientists. Only papers which will make a significant addition to the literature in the field will be published. Papers in all areas of neuroscience - molecular, cellular, developmental, systems, behavioral and cognitive, as well as computational - will be considered for publication. Submission of laboratory investigations that shed light on disease mechanisms is encouraged. Special Issues, edited by Guest Editors to cover new and rapidly-moving areas, will include invited mini-reviews. Occasional mini-reviews in especially timely areas will be considered for publication, without invitation, outside of Special Issues; these un-solicited mini-reviews can be submitted without invitation but must be of very high quality. Clinical studies will also be published if they provide new information about organization or actions of the nervous system, or provide new insights into the neurobiology of disease. NSL does not publish case reports.