TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in Saccharomyces cerevisiae.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY Molecular Biology of the Cell Pub Date : 2025-02-01 Epub Date: 2024-12-11 DOI:10.1091/mbc.E24-04-0147
Sarah R Chadwick, Samuel Stack-Couture, Matthew D Berg, Sonja Di Gregorio, Bryan Lung, Julie Genereaux, Robyn D Moir, Christopher J Brandl, Ian M Willis, Erik L Snapp, Patrick Lajoie
{"title":"TUDCA modulates drug bioavailability to regulate resistance to acute ER stress in <i>Saccharomyces cerevisiae</i>.","authors":"Sarah R Chadwick, Samuel Stack-Couture, Matthew D Berg, Sonja Di Gregorio, Bryan Lung, Julie Genereaux, Robyn D Moir, Christopher J Brandl, Ian M Willis, Erik L Snapp, Patrick Lajoie","doi":"10.1091/mbc.E24-04-0147","DOIUrl":null,"url":null,"abstract":"<p><p>Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA) has been described as a chemical chaperone. While promising in models of protein folding diseases, TUDCA's mechanism of action remains unclear. Here, we found TUDCA can rescue growth of yeast treated with the ER stressor tunicamycin (Tm), even in the absence of a functional UPR. In contrast, TUDCA failed to rescue growth on other ER stressors. Nor could TUDCA attenuate chronic UPR associated with specific gene deletions or overexpression of a misfolded mutant secretory protein. Neither pretreatment with nor delayed addition of TUDCA conferred protection against Tm. Importantly, attenuation of Tm-induced toxicity required TUDCA's critical micelle forming concentration, suggesting a mechanism where TUDCA directly sequesters drugs. Indeed, in several assays, TUDCA-treated cells closely resembled cells treated with lower doses of Tm. In addition, we found TUDCA can inhibit dyes from labeling intracellular compartments. Thus, our study challenges the model of TUDCA as a chemical chaperone and suggests that TUDCA decreases drug bioavailability, allowing cells to adapt to ER stress.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar13"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-04-0147","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA) has been described as a chemical chaperone. While promising in models of protein folding diseases, TUDCA's mechanism of action remains unclear. Here, we found TUDCA can rescue growth of yeast treated with the ER stressor tunicamycin (Tm), even in the absence of a functional UPR. In contrast, TUDCA failed to rescue growth on other ER stressors. Nor could TUDCA attenuate chronic UPR associated with specific gene deletions or overexpression of a misfolded mutant secretory protein. Neither pretreatment with nor delayed addition of TUDCA conferred protection against Tm. Importantly, attenuation of Tm-induced toxicity required TUDCA's critical micelle forming concentration, suggesting a mechanism where TUDCA directly sequesters drugs. Indeed, in several assays, TUDCA-treated cells closely resembled cells treated with lower doses of Tm. In addition, we found TUDCA can inhibit dyes from labeling intracellular compartments. Thus, our study challenges the model of TUDCA as a chemical chaperone and suggests that TUDCA decreases drug bioavailability, allowing cells to adapt to ER stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TUDCA通过调节药物生物利用度来调节酿酒酵母对急性内质网应激的抗性。
细胞通过激活未折叠蛋白反应(UPR)来对抗内质网(ER)中错误折叠分泌蛋白的积累。被称为化学伴侣的小分子可以促进蛋白质折叠以减轻内质网应激。胆汁酸牛磺酸去氧胆酸(TUDCA)被描述为一种化学伴侣。虽然在蛋白质折叠疾病模型中很有前景,但TUDCA的作用机制仍不清楚。在这里,我们发现,即使在没有功能性UPR的情况下,TUDCA也可以挽救经内质网应激源tunicamycin (Tm)处理的酵母的生长。相比之下,TUDCA未能在其他内源性应激源上挽救增长。TUDCA也不能减弱与特定基因缺失或错误折叠突变分泌蛋白过表达相关的慢性UPR。TUDCA预处理或延迟添加都不能对Tm产生保护作用。重要的是,tm诱导毒性的衰减需要TUDCA的临界胶束形成浓度,这提示了TUDCA直接隔离药物的机制。事实上,在一些试验中,TUDCA处理的细胞与低剂量Tm处理的细胞非常相似。此外,我们发现TUDCA可以抑制染料标记细胞内区室。因此,我们的研究挑战了TUDCA作为化学伴侣的模型,并表明TUDCA降低了药物的生物利用度,使细胞适应内质网应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
期刊最新文献
The adoption of the braided river model toward an inclusive STEM workforce for all. When everything is a master regulator, nothing is. DNA damage causes ATM-dependent heterochromatin loss leading to nuclear softening, blebbing, and rupture. Behind the scenes of cellular organization: Quantifying spatial phenotypes of puncta structures with statistical models including random fields. Close cooperation between Semi1 and Semi2 proteins is essential for pronuclear positioning in Tetrahymena thermophila.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1