Xian Xue, Xingwen Zhu, Lu Zhou, Xiaoli Sun, Mengru Gu, Yan Liang, Mengzhu Tan, Qing Hou, Sudan Wang, Chunsun Dai
{"title":"The Hippo Coactivator TAZ Exacerbates Cisplatin-Induced Acute Renal Injury.","authors":"Xian Xue, Xingwen Zhu, Lu Zhou, Xiaoli Sun, Mengru Gu, Yan Liang, Mengzhu Tan, Qing Hou, Sudan Wang, Chunsun Dai","doi":"10.1159/000540973","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo signaling pathway effector, maintains the balance of cell proliferation, differentiation, and death. However, the role of TAZ in tubular cell survival and acute kidney injury (AKI) remains largely unknown.</p><p><strong>Methods: </strong>We used the RNA-seq database, Western blot, and immunohistochemistry to examine TAZ expression in kidneys from cisplatin-induced AKI. We generated tubular-specific TAZ knockout mice to assess the role of TAZ in cisplatin-induced renal toxicity. Immunoprecipitation-mass spectrometry followed standard procedures.</p><p><strong>Results: </strong>TAZ was activated in tubular cells in kidneys injected with cisplatin. Conditional deletion of TAZ in tubular cells confers ferroptosis resistance and protects kidneys from cisplatin-induced AKI, whereas overexpression of TAZ(S89A) exacerbates cisplatin-induced ferroptosis. Inhibition of ferroptosis with ferrostatin-1 potently preserves renal function and alleviates morphological injury and tubular cell ferroptosis induced by cisplatin. Mechanistically, in a PPARδ-dependent manner, but not TEAD, TAZ reduces the expression of glutathione peroxidase 4 (GPX4), thus exacerbating cisplatin-induced ferroptosis.</p><p><strong>Conclusions: </strong>Our findings show that cisplatin-induced AKI and tubular cell ferroptosis are mediated by TAZ-PPARδ interaction through regulation of GPX4, highlighting TAZ as a potential therapeutic candidate for AKI.</p>","PeriodicalId":17830,"journal":{"name":"Kidney Diseases","volume":"10 6","pages":"421-435"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000540973","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo signaling pathway effector, maintains the balance of cell proliferation, differentiation, and death. However, the role of TAZ in tubular cell survival and acute kidney injury (AKI) remains largely unknown.
Methods: We used the RNA-seq database, Western blot, and immunohistochemistry to examine TAZ expression in kidneys from cisplatin-induced AKI. We generated tubular-specific TAZ knockout mice to assess the role of TAZ in cisplatin-induced renal toxicity. Immunoprecipitation-mass spectrometry followed standard procedures.
Results: TAZ was activated in tubular cells in kidneys injected with cisplatin. Conditional deletion of TAZ in tubular cells confers ferroptosis resistance and protects kidneys from cisplatin-induced AKI, whereas overexpression of TAZ(S89A) exacerbates cisplatin-induced ferroptosis. Inhibition of ferroptosis with ferrostatin-1 potently preserves renal function and alleviates morphological injury and tubular cell ferroptosis induced by cisplatin. Mechanistically, in a PPARδ-dependent manner, but not TEAD, TAZ reduces the expression of glutathione peroxidase 4 (GPX4), thus exacerbating cisplatin-induced ferroptosis.
Conclusions: Our findings show that cisplatin-induced AKI and tubular cell ferroptosis are mediated by TAZ-PPARδ interaction through regulation of GPX4, highlighting TAZ as a potential therapeutic candidate for AKI.
期刊介绍:
''Kidney Diseases'' aims to provide a platform for Asian and Western research to further and support communication and exchange of knowledge. Review articles cover the most recent clinical and basic science relevant to the entire field of nephrological disorders, including glomerular diseases, acute and chronic kidney injury, tubulo-interstitial disease, hypertension and metabolism-related disorders, end-stage renal disease, and genetic kidney disease. Special articles are prepared by two authors, one from East and one from West, which compare genetics, epidemiology, diagnosis methods, and treatment options of a disease.