Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-12-12 DOI:10.1007/s10334-024-01217-z
Habeeb Yusuff, Pierre-Emmanuel Zorn, Céline Giraudeau, Benoît Wach, Philippe Choquet, Simon Chatelin, Jean-Philippe Dillenseger
{"title":"Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts.","authors":"Habeeb Yusuff, Pierre-Emmanuel Zorn, Céline Giraudeau, Benoît Wach, Philippe Choquet, Simon Chatelin, Jean-Philippe Dillenseger","doi":"10.1007/s10334-024-01217-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purposes: </strong>This research highlights the need for affordable phantoms for MRI education. Current options are either expensive or limited. A phantom, easy to manufacture and distribute, is proposed to demonstrate various pedagogical concepts, aiding students in understanding MRI image quality concepts.</p><p><strong>Methods: </strong>We designed a cylindrical MRI phantom that comprises sections that can be filled with chosen liquids and gels. The dimensions were chosen to fit most consumer-grade 3D printers, facilitating widespread dissemination. It includes five modular sections for evaluating spatial resolution, geometrical accuracy, slice thickness accuracy, homogeneity, and contrast.</p><p><strong>Results: </strong>The modular cylindrical MRI phantom was successfully fabricated. Each section of the phantom was tested to ensure it met the specified pedagogical needs. The spatial resolution section provided clear images for evaluating fine details. The geometrical accuracy section allowed for precise measurement of distortions. The slice thickness accuracy section confirmed the consistency of slice thickness across different MRI sequences. The homogeneity section demonstrated uniform signal distribution, and the contrast section effectively displayed varying contrast levels.</p><p><strong>Conclusions: </strong>This modular MRI phantom offers a cost-effective tool for educational purposes in MRI. Its design enables educators to demonstrate multiple pedagogical scenarios with a single object. The phantom's compatibility with consumer-grade 3D printers and its modularity makes it accessible and adaptable to various educational settings. Future work could explore further customization and enhancement of the phantom to cover additional educational needs. This tool represents a significant step toward improving MRI education and training by providing a practical, hands-on learning experience.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01217-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purposes: This research highlights the need for affordable phantoms for MRI education. Current options are either expensive or limited. A phantom, easy to manufacture and distribute, is proposed to demonstrate various pedagogical concepts, aiding students in understanding MRI image quality concepts.

Methods: We designed a cylindrical MRI phantom that comprises sections that can be filled with chosen liquids and gels. The dimensions were chosen to fit most consumer-grade 3D printers, facilitating widespread dissemination. It includes five modular sections for evaluating spatial resolution, geometrical accuracy, slice thickness accuracy, homogeneity, and contrast.

Results: The modular cylindrical MRI phantom was successfully fabricated. Each section of the phantom was tested to ensure it met the specified pedagogical needs. The spatial resolution section provided clear images for evaluating fine details. The geometrical accuracy section allowed for precise measurement of distortions. The slice thickness accuracy section confirmed the consistency of slice thickness across different MRI sequences. The homogeneity section demonstrated uniform signal distribution, and the contrast section effectively displayed varying contrast levels.

Conclusions: This modular MRI phantom offers a cost-effective tool for educational purposes in MRI. Its design enables educators to demonstrate multiple pedagogical scenarios with a single object. The phantom's compatibility with consumer-grade 3D printers and its modularity makes it accessible and adaptable to various educational settings. Future work could explore further customization and enhancement of the phantom to cover additional educational needs. This tool represents a significant step toward improving MRI education and training by providing a practical, hands-on learning experience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发具有成本效益的3d打印MRI模型,用于增强系统性能和图像质量概念的教学。
目的:本研究强调了对可负担得起的MRI教育模型的需求。目前的选择要么昂贵,要么有限。我们提出一个易于制造和分发的模型来演示各种教学概念,帮助学生理解MRI图像质量的概念。方法:我们设计了一个圆柱形MRI模体,包括可填充选定液体和凝胶的切片。尺寸选择适合大多数消费级3D打印机,便于广泛传播。它包括五个模块部分,用于评估空间分辨率,几何精度,切片厚度精度,均匀性和对比度。结果:成功制备了模块化的圆柱形MRI模体。幻影的每个部分都经过测试,以确保它满足特定的教学需求。空间分辨率部分为评估精细细节提供了清晰的图像。几何精度部分允许对扭曲进行精确测量。层厚精度切片证实了不同MRI序列层厚的一致性。均匀切片显示均匀的信号分布,对比切片有效显示不同的对比度水平。结论:这种模块化的MRI假体为MRI教学提供了一种经济有效的工具。它的设计使教育者能够用一个对象演示多个教学场景。幻影与消费级3D打印机的兼容性及其模块化使其易于访问并适应各种教育环境。未来的工作可以探索进一步定制和增强幻影,以满足额外的教育需求。该工具通过提供实用的、动手的学习经验,代表了向改进MRI教育和培训迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Initial assessment of PNS safety for interventionalists during image-guided procedures. Deep learning for efficient reconstruction of highly accelerated 3D FLAIR MRI in neurological deficits. Brain tumor detection and segmentation using deep learning. Accelerating multi-coil MR image reconstruction using weak supervision. Concentric-object and equiangular-object methods to perform standardized regional analysis in renal mpMRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1