FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance Materials in Physics, Biology and Medicine Pub Date : 2024-12-12 DOI:10.1007/s10334-024-01216-0
Nur Najihah Hamzaini, Syafia Afifi Ghazali, Ahmad Nazlim Yusoff, Faizah Mohd Zaki, Wan Noor Afzan Wan Sulaiman, Yanurita Dwihapsari
{"title":"FeCl<sub>3</sub> and GdCl<sub>3</sub> solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis.","authors":"Nur Najihah Hamzaini, Syafia Afifi Ghazali, Ahmad Nazlim Yusoff, Faizah Mohd Zaki, Wan Noor Afzan Wan Sulaiman, Yanurita Dwihapsari","doi":"10.1007/s10334-024-01216-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Object: </strong>This study aimed to evaluate the relaxivity and uniformity of agarose gel phantoms added with relaxation modifiers. It is hypothesized that the modifiers could manipulate the T1 and T2 relaxations as well as the signal uniformity.</p><p><strong>Materials and methods: </strong>Twenty agarose gel phantoms with different GdCl₃ and FeCl₃ volume fractions were prepared. The phantoms were scanned using a 3-T scanner implementing a turbo spin echo sequence to acquire T1 and T2 images. The SNR of the images were computed using Image-J software from 1, 3, and 25 regions-of-interest (ROIs) and were inverted as T1 and T2 curves.</p><p><strong>Results: </strong>With the increase in relaxation modifier content, T1 SNR increased at a faster rate at very short TR and reached saturation at TR well below 400 ms. Agarose gel phantoms containing GdCl<sub>3</sub> showed a higher saturation value as compared to phantoms containing FeCl<sub>3</sub>. For T2 SNR, differences between plots are observed at low TE. As TE gets larger, the SNR between plots is incomparable. The SNR for both groups was uniform among 1, 3, and 25 ROIs.</p><p><strong>Discussions: </strong>It can be concluded that GdCl₃ and FeCl₃ solutions can be used as effective relaxation modifiers to reduce T1 but not T2 relaxation times.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-024-01216-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Object: This study aimed to evaluate the relaxivity and uniformity of agarose gel phantoms added with relaxation modifiers. It is hypothesized that the modifiers could manipulate the T1 and T2 relaxations as well as the signal uniformity.

Materials and methods: Twenty agarose gel phantoms with different GdCl₃ and FeCl₃ volume fractions were prepared. The phantoms were scanned using a 3-T scanner implementing a turbo spin echo sequence to acquire T1 and T2 images. The SNR of the images were computed using Image-J software from 1, 3, and 25 regions-of-interest (ROIs) and were inverted as T1 and T2 curves.

Results: With the increase in relaxation modifier content, T1 SNR increased at a faster rate at very short TR and reached saturation at TR well below 400 ms. Agarose gel phantoms containing GdCl3 showed a higher saturation value as compared to phantoms containing FeCl3. For T2 SNR, differences between plots are observed at low TE. As TE gets larger, the SNR between plots is incomparable. The SNR for both groups was uniform among 1, 3, and 25 ROIs.

Discussions: It can be concluded that GdCl₃ and FeCl₃ solutions can be used as effective relaxation modifiers to reduce T1 but not T2 relaxation times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
期刊最新文献
Development of a cost-effective 3D-printed MRI phantom for enhanced teaching of system performance and image quality concepts. FeCl3 and GdCl3 solutions as superfast relaxation modifiers for agarose gel: a quantitative analysis. Correction to: Motion robust coronary MR angiography using zigzag centric ky-kz trajectory and high-resolution deep learning reconstruction. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. PyFaceWipe: a new defacing tool for almost any MRI contrast.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1