Salmonella-based therapeutic strategies: improving tumor microenvironment and bringing new hope for cancer immunotherapy.

IF 2.8 4区 医学 Q2 ONCOLOGY Medical Oncology Pub Date : 2024-12-12 DOI:10.1007/s12032-024-02578-0
Xiaoe He, Jiayin Guo, Yanrui Bai, Hui Sun, Jing Yang
{"title":"Salmonella-based therapeutic strategies: improving tumor microenvironment and bringing new hope for cancer immunotherapy.","authors":"Xiaoe He, Jiayin Guo, Yanrui Bai, Hui Sun, Jing Yang","doi":"10.1007/s12032-024-02578-0","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy has revolutionized cancer treatment, yet its effectiveness is limited by immunosuppressive tumor microenvironment (TME). To overcome this challenge, innovative strategies to effectively modulate the TME are urgently needed. Over the past decades, bacteria-mediated cancer immunotherapy has recaptured increasing attention, driven by advances in synthetic biology, genetic engineering and our knowledge of host-pathogen interactions. Among various bacterial species, Salmonella has emerged as a leading candidate with significant therapeutic potential due to its broad-spectrum anti-tumor activity, tumor-targeting ability, immunomodulatory effects, oncolytic properties, genetic programmability, and engineering flexibility. These characteristics enable Salmonella to reshape the immunosuppressive TME, thereby enhancing anti-tumor efficacy. This review elaborates the regulatory effects of Salmonella on key components of the TME, the versatile engineering strategies for optimizing Salmonella's ability to modulate the TME, and recent advancements in combination cancer therapies. We also summarize current clinical applications and discuss challenges of developing safer and more effective Salmonella-based cancer immunotherapy.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 1","pages":"27"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-024-02578-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy has revolutionized cancer treatment, yet its effectiveness is limited by immunosuppressive tumor microenvironment (TME). To overcome this challenge, innovative strategies to effectively modulate the TME are urgently needed. Over the past decades, bacteria-mediated cancer immunotherapy has recaptured increasing attention, driven by advances in synthetic biology, genetic engineering and our knowledge of host-pathogen interactions. Among various bacterial species, Salmonella has emerged as a leading candidate with significant therapeutic potential due to its broad-spectrum anti-tumor activity, tumor-targeting ability, immunomodulatory effects, oncolytic properties, genetic programmability, and engineering flexibility. These characteristics enable Salmonella to reshape the immunosuppressive TME, thereby enhancing anti-tumor efficacy. This review elaborates the regulatory effects of Salmonella on key components of the TME, the versatile engineering strategies for optimizing Salmonella's ability to modulate the TME, and recent advancements in combination cancer therapies. We also summarize current clinical applications and discuss challenges of developing safer and more effective Salmonella-based cancer immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
期刊最新文献
Sorcin: mechanisms of action in cancer hallmarks, drug resistance and opportunities in therapeutics. LncRNAs in modulating cancer cell resistance to paclitaxel (PTX) therapy. Salmonella-based therapeutic strategies: improving tumor microenvironment and bringing new hope for cancer immunotherapy. Metal-organic frameworks as nanoplatforms for combination therapy in cancer treatment. Progression and perspectives in disease modeling for Juvenile myelomonocytic leukemia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1