Based on network pharmacology, the mechanism of Dioscin in alleviating renal tubular epithelial cell injury induced by calcium oxalate crystals was explored.
Hu Liang, Yuexian Xu, Shuai Sun, Yang Chen, Wei Wang, Zongyao Hao
{"title":"Based on network pharmacology, the mechanism of Dioscin in alleviating renal tubular epithelial cell injury induced by calcium oxalate crystals was explored.","authors":"Hu Liang, Yuexian Xu, Shuai Sun, Yang Chen, Wei Wang, Zongyao Hao","doi":"10.1007/s00240-024-01673-1","DOIUrl":null,"url":null,"abstract":"<p><p>The commencement of kidney stone formation involves a crucial initial phase characterized by injury to renal tubular cells caused by calcium oxalate (CaOx). Dioscin (Dio) has been acknowledged for its potent anti-inflammation and anti-apoptotic properties; nevertheless, the impact and underlying Investigation into the molecular basis underlying the action of Dioscin in mitigating inflammation and apoptotic induced by exposure to calcium oxalate crystals in renal tissues remain unexplored. To comprehend the precise mechanism of Dioscin in the treatment of crystalline nephropathy, we conducted experiments utilizing a murine model of CaOx crystal deposition, induced by intraperitoneal administration of glyoxylate. An in vitro model was constructed using HK-2 cells exposed to calcium oxalate monohydrate (COM). To evaluate the effect of Dioscin on calcium oxalate crystal deposition by ROS assay, Western blotting, immunohistochemistry, Periodic Acid-Schiff staining (PAS) staining, hematoxylin-eosin (H&E) staining. Using network pharmacology and molecular docking methods, we explored the molecular mechanism of Dioscin in the treatment of CaOx-induced renal tubular epithelial cell injury. Subsequently, we conducted experiments to verify our findings. We observed a significant protective effect of Dioscin treatment against kidney oxidative stress and inflammation induced by CaOx. Then we predicted through network pharmacology that Dioscin exerts its anti-apoptotic effect through the NF-kappa B signaling pathway. Then we verified in vitro and in vivo that administration of Dioscin can alleviate the elevation of TLR4 and activation of the NF-kappa B signaling pathway induced by calcium oxalate, as well as attenuate renal apoptosis. Instead, the beneficial impact of this protection of Dioscin was reversed after overexpression of the TLR4. Dioscin has the potential to alleviate the activation of the NF-kappa B signaling pathway through TLR4, thereby exerting anti-inflammatory and anti-apoptotic effects. This study provides new ideas for the prevention and treatment of kidney stones.</p>","PeriodicalId":23411,"journal":{"name":"Urolithiasis","volume":"53 1","pages":"3"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urolithiasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00240-024-01673-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The commencement of kidney stone formation involves a crucial initial phase characterized by injury to renal tubular cells caused by calcium oxalate (CaOx). Dioscin (Dio) has been acknowledged for its potent anti-inflammation and anti-apoptotic properties; nevertheless, the impact and underlying Investigation into the molecular basis underlying the action of Dioscin in mitigating inflammation and apoptotic induced by exposure to calcium oxalate crystals in renal tissues remain unexplored. To comprehend the precise mechanism of Dioscin in the treatment of crystalline nephropathy, we conducted experiments utilizing a murine model of CaOx crystal deposition, induced by intraperitoneal administration of glyoxylate. An in vitro model was constructed using HK-2 cells exposed to calcium oxalate monohydrate (COM). To evaluate the effect of Dioscin on calcium oxalate crystal deposition by ROS assay, Western blotting, immunohistochemistry, Periodic Acid-Schiff staining (PAS) staining, hematoxylin-eosin (H&E) staining. Using network pharmacology and molecular docking methods, we explored the molecular mechanism of Dioscin in the treatment of CaOx-induced renal tubular epithelial cell injury. Subsequently, we conducted experiments to verify our findings. We observed a significant protective effect of Dioscin treatment against kidney oxidative stress and inflammation induced by CaOx. Then we predicted through network pharmacology that Dioscin exerts its anti-apoptotic effect through the NF-kappa B signaling pathway. Then we verified in vitro and in vivo that administration of Dioscin can alleviate the elevation of TLR4 and activation of the NF-kappa B signaling pathway induced by calcium oxalate, as well as attenuate renal apoptosis. Instead, the beneficial impact of this protection of Dioscin was reversed after overexpression of the TLR4. Dioscin has the potential to alleviate the activation of the NF-kappa B signaling pathway through TLR4, thereby exerting anti-inflammatory and anti-apoptotic effects. This study provides new ideas for the prevention and treatment of kidney stones.
期刊介绍:
Official Journal of the International Urolithiasis Society
The journal aims to publish original articles in the fields of clinical and experimental investigation only within the sphere of urolithiasis and its related areas of research. The journal covers all aspects of urolithiasis research including the diagnosis, epidemiology, pathogenesis, genetics, clinical biochemistry, open and non-invasive surgical intervention, nephrological investigation, chemistry and prophylaxis of the disorder. The Editor welcomes contributions on topics of interest to urologists, nephrologists, radiologists, clinical biochemists, epidemiologists, nutritionists, basic scientists and nurses working in that field.
Contributions may be submitted as full-length articles or as rapid communications in the form of Letters to the Editor. Articles should be original and should contain important new findings from carefully conducted studies designed to produce statistically significant data. Please note that we no longer publish articles classified as Case Reports. Editorials and review articles may be published by invitation from the Editorial Board. All submissions are peer-reviewed. Through an electronic system for the submission and review of manuscripts, the Editor and Associate Editors aim to make publication accessible as quickly as possible to a large number of readers throughout the world.