MRI-based deep learning and radiomics for predicting the efficacy of PD-1 inhibitor combined with induction chemotherapy in advanced nasopharyngeal carcinoma: A prospective cohort study.
Yiru Wang, Fuli Chen, Zhechen Ouyang, Siyi He, Xinling Qin, Xian Liang, Weimei Huang, Rensheng Wang, Kai Hu
{"title":"MRI-based deep learning and radiomics for predicting the efficacy of PD-1 inhibitor combined with induction chemotherapy in advanced nasopharyngeal carcinoma: A prospective cohort study.","authors":"Yiru Wang, Fuli Chen, Zhechen Ouyang, Siyi He, Xinling Qin, Xian Liang, Weimei Huang, Rensheng Wang, Kai Hu","doi":"10.1016/j.tranon.2024.102245","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>An increasing number of nasopharyngeal carcinoma (NPC) patients benefit from immunotherapy with chemotherapy as an induction treatment. Currently, there isn't a reliable method to assess the efficacy of this regimen, which hinders informed decision-making for follow-up care.</p><p><strong>Aim: </strong>To establish and evaluate a model for predicting the efficacy of programmed death-1 (PD-1) inhibitor combined with GP (gemcitabine and cisplatin) induction chemotherapy based on deep learning features (DLFs) and radiomic features.</p><p><strong>Methods: </strong>Ninety-nine patients diagnosed with advanced NPC were enrolled and randomly divided into training set and test set in a 7:3 ratio. From MRI scans, DLFs and conventional radiomic characteristics were recovered. The random forest algorithm was employed to identify the most valuable features. A prediction model was then created using these radiomic characteristics and DLFs to determine the effectiveness of PD-1 inhibitor combined with GP chemotherapy. The model's performance was assessed using Receiver Operating Characteristic (ROC) curve analysis, area under the curve (AUC), accuracy (ACC), and negative predictive value (NPV).</p><p><strong>Results: </strong>Twenty-one prediction models were constructed. The Tf_Radiomics+Resnet101 model, which combines radiomic features and DLFs, demonstrated the best performance. The model's AUC, ACC, and NPV values in the training and test sets were 0.936 (95%CI: 0.827-1.0), 0.9, and 0.923, respectively.</p><p><strong>Conclusion: </strong>The Tf_Radiomics+Resnet101 model, based on MRI and Resnet101 deep learning, shows a high ability to predict the clinically complete response (cCR) efficacy of PD-1 inhibitor combined with GP in advanced NPC. This model can significantly enhance the treatment management of patients with advanced NPC.</p>","PeriodicalId":23244,"journal":{"name":"Translational Oncology","volume":"52 ","pages":"102245"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tranon.2024.102245","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: An increasing number of nasopharyngeal carcinoma (NPC) patients benefit from immunotherapy with chemotherapy as an induction treatment. Currently, there isn't a reliable method to assess the efficacy of this regimen, which hinders informed decision-making for follow-up care.
Aim: To establish and evaluate a model for predicting the efficacy of programmed death-1 (PD-1) inhibitor combined with GP (gemcitabine and cisplatin) induction chemotherapy based on deep learning features (DLFs) and radiomic features.
Methods: Ninety-nine patients diagnosed with advanced NPC were enrolled and randomly divided into training set and test set in a 7:3 ratio. From MRI scans, DLFs and conventional radiomic characteristics were recovered. The random forest algorithm was employed to identify the most valuable features. A prediction model was then created using these radiomic characteristics and DLFs to determine the effectiveness of PD-1 inhibitor combined with GP chemotherapy. The model's performance was assessed using Receiver Operating Characteristic (ROC) curve analysis, area under the curve (AUC), accuracy (ACC), and negative predictive value (NPV).
Results: Twenty-one prediction models were constructed. The Tf_Radiomics+Resnet101 model, which combines radiomic features and DLFs, demonstrated the best performance. The model's AUC, ACC, and NPV values in the training and test sets were 0.936 (95%CI: 0.827-1.0), 0.9, and 0.923, respectively.
Conclusion: The Tf_Radiomics+Resnet101 model, based on MRI and Resnet101 deep learning, shows a high ability to predict the clinically complete response (cCR) efficacy of PD-1 inhibitor combined with GP in advanced NPC. This model can significantly enhance the treatment management of patients with advanced NPC.
期刊介绍:
Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.