Rinie van Beuningen, Kin Ki Jim, Maikel Boot, Michel Ossendrijver, Bart J F Keijser, Jeroen H B van de Bovenkamp, Willem J G Melchers, Tim Kievits
{"title":"Development of a large-scale rapid LAMP diagnostic testing platform for pandemic preparedness and outbreak response.","authors":"Rinie van Beuningen, Kin Ki Jim, Maikel Boot, Michel Ossendrijver, Bart J F Keijser, Jeroen H B van de Bovenkamp, Willem J G Melchers, Tim Kievits","doi":"10.1093/biomethods/bpae090","DOIUrl":null,"url":null,"abstract":"<p><p>The coronavirus disease 2019 (COVID-19) pandemic underscored the necessity for rapid and efficient diagnostic testing to mitigate outbreaks and control disease transmission. While real-time reverse transcriptase quantitative PCR (RT-qPCR) has been the gold standard due to its high sensitivity and specificity, its logistical complexities and extended turnaround times highlighted the need for alternative molecular methods and non-standard equipment and consumables not subject to supply chain pressure. Loop-mediated isothermal amplification (LAMP) offers several advantages over RT-qPCR, including faster processing time, assay flexibility and cost-effectiveness. During the pandemic, LAMP was successfully demonstrated as a viable alternative to RT-qPCR for SARS-Related Coronavirus 2 detection. However, due to a 100 to 1,000-fold increase in testing volumes, there was an imminent need for automating and scaling up existing LAMP testing workflows leveraging a robotic infrastructure, while retaining analytical performance and cost-effectiveness. In 2020, the Foundation TOMi started the \"TOMi corona initiative\" to develop and validate a high-throughput, end-to-end, automated, scalable single-step RNA purification, and LAMP-based COVID-19 testing system called SMART-LAMP (Scalable Molecular Automation for Rapid Testing using LAMP) that can process up to 40,000 samples per day using existing laboratory equipment infrastructure with sensitivity comparable to RT-qPCR. This system provides a rapid and scalable diagnostic solution for future pandemics, capable of processing over 40,000 samples per day. In addition, the system is designed to minimize consumable costs and reduces the overall use of plastics to align with increasingly strict sustainability goals that will be imposed over the coming years. Importantly, this system and public-private partnerships in the TOMi corona initiative has the potential to serve as a baseline to enhance pandemic preparedness and response capabilities.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"9 1","pages":"bpae090"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpae090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underscored the necessity for rapid and efficient diagnostic testing to mitigate outbreaks and control disease transmission. While real-time reverse transcriptase quantitative PCR (RT-qPCR) has been the gold standard due to its high sensitivity and specificity, its logistical complexities and extended turnaround times highlighted the need for alternative molecular methods and non-standard equipment and consumables not subject to supply chain pressure. Loop-mediated isothermal amplification (LAMP) offers several advantages over RT-qPCR, including faster processing time, assay flexibility and cost-effectiveness. During the pandemic, LAMP was successfully demonstrated as a viable alternative to RT-qPCR for SARS-Related Coronavirus 2 detection. However, due to a 100 to 1,000-fold increase in testing volumes, there was an imminent need for automating and scaling up existing LAMP testing workflows leveraging a robotic infrastructure, while retaining analytical performance and cost-effectiveness. In 2020, the Foundation TOMi started the "TOMi corona initiative" to develop and validate a high-throughput, end-to-end, automated, scalable single-step RNA purification, and LAMP-based COVID-19 testing system called SMART-LAMP (Scalable Molecular Automation for Rapid Testing using LAMP) that can process up to 40,000 samples per day using existing laboratory equipment infrastructure with sensitivity comparable to RT-qPCR. This system provides a rapid and scalable diagnostic solution for future pandemics, capable of processing over 40,000 samples per day. In addition, the system is designed to minimize consumable costs and reduces the overall use of plastics to align with increasingly strict sustainability goals that will be imposed over the coming years. Importantly, this system and public-private partnerships in the TOMi corona initiative has the potential to serve as a baseline to enhance pandemic preparedness and response capabilities.