Development, deployment, and continuous monitoring of a machine learning model to predict respiratory failure in critically ill patients.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES JAMIA Open Pub Date : 2024-12-11 eCollection Date: 2024-12-01 DOI:10.1093/jamiaopen/ooae141
Jonathan Y Lam, Xiaolei Lu, Supreeth P Shashikumar, Ye Sel Lee, Michael Miller, Hayden Pour, Aaron E Boussina, Alex K Pearce, Atul Malhotra, Shamim Nemati
{"title":"Development, deployment, and continuous monitoring of a machine learning model to predict respiratory failure in critically ill patients.","authors":"Jonathan Y Lam, Xiaolei Lu, Supreeth P Shashikumar, Ye Sel Lee, Michael Miller, Hayden Pour, Aaron E Boussina, Alex K Pearce, Atul Malhotra, Shamim Nemati","doi":"10.1093/jamiaopen/ooae141","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study describes the development and deployment of a machine learning (ML) model called Vent.io to predict mechanical ventilation (MV).</p><p><strong>Materials and methods: </strong>We trained Vent.io using electronic health record data of adult patients admitted to the intensive care units (ICUs) of the University of California San Diego (UCSD) Health System. We prospectively deployed Vent.io using a real-time platform at UCSD and evaluated the performance of Vent.io for a 1-month period in silent mode and on the MIMIC-IV dataset. As part of deployment, we included a Predetermined Changed Control Plan (PCCP) for continuous model monitoring that triggers model fine-tuning if performance drops below a specified area under the receiver operating curve (AUC) threshold of 0.85.</p><p><strong>Results: </strong>The Vent.io model had a median AUC of 0.897 (IQR: 0.892-0.904) with specificity of 0.81 (IQR: 0.812-0.841) and positive predictive value (PPV) of 0.174 (IQR: 0.148-0.176) at a fixed sensitivity of 0.6 during 10-fold cross validation and an AUC of 0.908, sensitivity of 0.632, specificity of 0.849, and PPV of 0.235 during prospective deployment. Vent.io had an AUC of 0.73 on the MIMIC-IV dataset, triggering model fine-tuning per the PCCP as the AUC was below the minimum of 0.85. The fine-tuned Vent.io model achieved an AUC of 0.873.</p><p><strong>Discussion: </strong>Deterioration of model performance is a significant challenge when deploying ML models prospectively or at different sites. Implementation of a PCCP can help models adapt to new patterns in data and maintain generalizability.</p><p><strong>Conclusion: </strong>Vent.io is a generalizable ML model that has the potential to improve patient care and resource allocation for ICU patients with need for MV.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"7 4","pages":"ooae141"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633942/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study describes the development and deployment of a machine learning (ML) model called Vent.io to predict mechanical ventilation (MV).

Materials and methods: We trained Vent.io using electronic health record data of adult patients admitted to the intensive care units (ICUs) of the University of California San Diego (UCSD) Health System. We prospectively deployed Vent.io using a real-time platform at UCSD and evaluated the performance of Vent.io for a 1-month period in silent mode and on the MIMIC-IV dataset. As part of deployment, we included a Predetermined Changed Control Plan (PCCP) for continuous model monitoring that triggers model fine-tuning if performance drops below a specified area under the receiver operating curve (AUC) threshold of 0.85.

Results: The Vent.io model had a median AUC of 0.897 (IQR: 0.892-0.904) with specificity of 0.81 (IQR: 0.812-0.841) and positive predictive value (PPV) of 0.174 (IQR: 0.148-0.176) at a fixed sensitivity of 0.6 during 10-fold cross validation and an AUC of 0.908, sensitivity of 0.632, specificity of 0.849, and PPV of 0.235 during prospective deployment. Vent.io had an AUC of 0.73 on the MIMIC-IV dataset, triggering model fine-tuning per the PCCP as the AUC was below the minimum of 0.85. The fine-tuned Vent.io model achieved an AUC of 0.873.

Discussion: Deterioration of model performance is a significant challenge when deploying ML models prospectively or at different sites. Implementation of a PCCP can help models adapt to new patterns in data and maintain generalizability.

Conclusion: Vent.io is a generalizable ML model that has the potential to improve patient care and resource allocation for ICU patients with need for MV.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发、部署和持续监测预测危重患者呼吸衰竭的机器学习模型。
目的:本研究描述了一个名为Vent的机器学习(ML)模型的开发和部署。预测机械通气(MV)。材料和方法:我们训练Vent。利用加州大学圣地亚哥分校(UCSD)卫生系统重症监护病房(icu)收治的成年患者的电子健康记录数据。我们预期部署了Vent。利用UCSD的实时平台对Vent的性能进行了评估。在沉默模式下和MIMIC-IV数据集上进行为期1个月的测试。作为部署的一部分,我们包含了一个用于连续模型监控的预定更改控制计划(PCCP),如果性能下降到接收器操作曲线(AUC)阈值0.85下的指定区域以下,则触发模型微调。结果:通风口。在10倍交叉验证时,该模型的中位AUC为0.897 (IQR: 0.892-0.904),特异性为0.81 (IQR: 0.812-0.841);在固定灵敏度为0.6的情况下,阳性预测值(PPV)为0.174 (IQR: 0.148-0.176);在预期部署时,AUC为0.908,敏感性为0.632,特异性为0.849,PPV为0.235。发泄。io在MIMIC-IV数据集上的AUC为0.73,当AUC低于最小值0.85时,触发每个PCCP的模型微调。经过微调的通风口。模型的AUC为0.873。讨论:当在不同的地点部署ML模型时,模型性能的恶化是一个重大的挑战。PCCP的实现可以帮助模型适应数据中的新模式并保持通用性。结论:发泄。io是一个可推广的ML模型,有可能改善需要MV的ICU患者的患者护理和资源分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
期刊最新文献
Aligning prediction models with clinical information needs: infant sepsis case study. Semantic enrichment of Pomeranian health study data using LOINC and WHO-FIC terminology mapping principles. Exploring beyond diagnoses in electronic health records to improve discovery: a review of the phenome-wide association study. Toward digital caregiving network interventions for children with medical complexity living in socioeconomically disadvantaged neighborhoods. Transforming appeal decisions: machine learning triage for hospital admission denials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1