Madeleine S Torcasso, Junting Ai, Gabriel Casella, Thao Cao, Anthony Chang, Ariel Halper-Stromberg, Bana Jabri, Marcus R Clark, Maryellen L Giger
{"title":"Pseudo-spectral angle mapping for pixel and cell classification in highly multiplexed immunofluorescence images.","authors":"Madeleine S Torcasso, Junting Ai, Gabriel Casella, Thao Cao, Anthony Chang, Ariel Halper-Stromberg, Bana Jabri, Marcus R Clark, Maryellen L Giger","doi":"10.1117/1.JMI.11.6.067502","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The rapid development of highly multiplexed microscopy has enabled the study of cells embedded within their native tissue. The rich spatial data provided by these techniques have yielded exciting insights into the spatial features of human disease. However, computational methods for analyzing these high-content images are still emerging; there is a need for more robust and generalizable tools for evaluating the cellular constituents and stroma captured by high-plex imaging. To address this need, we have adapted spectral angle mapping-an algorithm developed for hyperspectral image analysis-to compress the channel dimension of high-plex immunofluorescence (IF) images.</p><p><strong>Approach: </strong>Here, we present pseudo-spectral angle mapping (pSAM), a robust and flexible method for determining the most likely class of each pixel in a high-plex image. The class maps calculated through pSAM yield pixel classifications which can be combined with instance segmentation algorithms to classify individual cells.</p><p><strong>Results: </strong>In a dataset of colon biopsies imaged with a 13-plex staining panel, 16 pSAM class maps were computed to generate pixel classifications. Instance segmentations of cells with Cellpose2.0 ( <math><mrow><mi>F</mi> <mn>1</mn></mrow> </math> -score of <math><mrow><mn>0.83</mn> <mo>±</mo> <mn>0.13</mn></mrow> </math> ) were combined with these class maps to provide cell class predictions for 13 cell classes. In addition, in a separate unseen dataset of kidney biopsies imaged with a 44-plex staining panel, pSAM plus Cellpose2.0 ( <math><mrow><mi>F</mi> <mn>1</mn></mrow> </math> -score of <math><mrow><mn>0.86</mn> <mo>±</mo> <mn>0.11</mn></mrow> </math> ) detected a diverse set of 38 classes of structural and immune cells.</p><p><strong>Conclusions: </strong>In summary, pSAM is a powerful and generalizable tool for evaluating high-plex IF image data and classifying cells in these high-dimensional images.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 6","pages":"067502"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.6.067502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The rapid development of highly multiplexed microscopy has enabled the study of cells embedded within their native tissue. The rich spatial data provided by these techniques have yielded exciting insights into the spatial features of human disease. However, computational methods for analyzing these high-content images are still emerging; there is a need for more robust and generalizable tools for evaluating the cellular constituents and stroma captured by high-plex imaging. To address this need, we have adapted spectral angle mapping-an algorithm developed for hyperspectral image analysis-to compress the channel dimension of high-plex immunofluorescence (IF) images.
Approach: Here, we present pseudo-spectral angle mapping (pSAM), a robust and flexible method for determining the most likely class of each pixel in a high-plex image. The class maps calculated through pSAM yield pixel classifications which can be combined with instance segmentation algorithms to classify individual cells.
Results: In a dataset of colon biopsies imaged with a 13-plex staining panel, 16 pSAM class maps were computed to generate pixel classifications. Instance segmentations of cells with Cellpose2.0 ( -score of ) were combined with these class maps to provide cell class predictions for 13 cell classes. In addition, in a separate unseen dataset of kidney biopsies imaged with a 44-plex staining panel, pSAM plus Cellpose2.0 ( -score of ) detected a diverse set of 38 classes of structural and immune cells.
Conclusions: In summary, pSAM is a powerful and generalizable tool for evaluating high-plex IF image data and classifying cells in these high-dimensional images.
期刊介绍:
JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.