Novel Risk Scoring Model to Predict the Implementation of Veno-Arterial Extracorporeal Membrane Oxygenation in Patients With Acute Myocarditis.

IF 3.1 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Circulation Journal Pub Date : 2024-12-12 DOI:10.1253/circj.CJ-24-0684
David Hong, Minjung Bak, Hyukjin Park, Hyung Yoon Kim, Seonhwa Lee, In-Cheol Kim, Junho Hyun, So Ree Kim, Mi-Na Kim, Kyung-Hee Kim, Jeong Hoon Yang
{"title":"Novel Risk Scoring Model to Predict the Implementation of Veno-Arterial Extracorporeal Membrane Oxygenation in Patients With Acute Myocarditis.","authors":"David Hong, Minjung Bak, Hyukjin Park, Hyung Yoon Kim, Seonhwa Lee, In-Cheol Kim, Junho Hyun, So Ree Kim, Mi-Na Kim, Kyung-Hee Kim, Jeong Hoon Yang","doi":"10.1253/circj.CJ-24-0684","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aimed to identify risk factors associated with the implementation of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) in patients with acute myocarditis and to develop a predictive model.</p><p><strong>Methods and results: </strong>This retrospective study included 841 patients from 7 hospitals in Korea with biopsy-proven or clinically suspected acute myocarditis. Logistic regression analysis was used to identify the clinical characteristics of patients who required VA-ECMO and to construct a scoring system to predict the implementation of VA-ECMO. Among the study population, 217 (25.8%) patients underwent VA-ECMO. The study population was divided into training (n=621) and testing (n=220) cohorts according to participating center. The final predictive model of VA-ECMO insertion derived from the training cohort included the following: initial mean blood pressure <65 mmHg, cardiac arrest, Glasgow Coma Scale score ≤12, platelet count <100×10<sup>3</sup>/mL, pulmonary congestion on chest X-ray, QRS interval ≥120 ms, left or right bundle branch block, and left ventricular ejection fraction <40%. Using this predictive model, a β coefficient-weighted Korean Acute Myocarditis (KAM) score was developed. External validation of the predictive model and KAM score using the testing cohort showed excellent discriminant ability (areas under the curve of 0.945 and 0.921, respectively).</p><p><strong>Conclusions: </strong>A risk scoring system based on simple clinical and laboratory parameters at initial presentation could predict the implementation of VA-ECMO and clinical course in patients with acute myocarditis.</p>","PeriodicalId":50691,"journal":{"name":"Circulation Journal","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1253/circj.CJ-24-0684","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aimed to identify risk factors associated with the implementation of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) in patients with acute myocarditis and to develop a predictive model.

Methods and results: This retrospective study included 841 patients from 7 hospitals in Korea with biopsy-proven or clinically suspected acute myocarditis. Logistic regression analysis was used to identify the clinical characteristics of patients who required VA-ECMO and to construct a scoring system to predict the implementation of VA-ECMO. Among the study population, 217 (25.8%) patients underwent VA-ECMO. The study population was divided into training (n=621) and testing (n=220) cohorts according to participating center. The final predictive model of VA-ECMO insertion derived from the training cohort included the following: initial mean blood pressure <65 mmHg, cardiac arrest, Glasgow Coma Scale score ≤12, platelet count <100×103/mL, pulmonary congestion on chest X-ray, QRS interval ≥120 ms, left or right bundle branch block, and left ventricular ejection fraction <40%. Using this predictive model, a β coefficient-weighted Korean Acute Myocarditis (KAM) score was developed. External validation of the predictive model and KAM score using the testing cohort showed excellent discriminant ability (areas under the curve of 0.945 and 0.921, respectively).

Conclusions: A risk scoring system based on simple clinical and laboratory parameters at initial presentation could predict the implementation of VA-ECMO and clinical course in patients with acute myocarditis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测急性心肌炎患者静脉-动脉体外膜氧合实施的新型风险评分模型。
背景:本研究旨在确定急性心肌炎患者实施静脉-动脉体外膜氧合(VA-ECMO)的相关危险因素,并建立预测模型。方法和结果:本回顾性研究纳入韩国7家医院活检证实或临床怀疑急性心肌炎的841例患者。采用Logistic回归分析确定需要VA-ECMO患者的临床特征,并构建评分系统预测VA-ECMO的实施。在研究人群中,217例(25.8%)患者接受了VA-ECMO。根据参与中心的不同,将研究人群分为培训组(n=621)和测试组(n=220)。训练队列得出的VA-ECMO插入的最终预测模型包括:初始平均血压3/mL、胸片肺充血、QRS间期≥120 ms、左束或右束分支阻滞、左室射血分数。结论:基于初始就诊时简单的临床和实验室参数的风险评分系统可以预测急性心肌炎患者VA-ECMO的实施和临床病程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Circulation Journal
Circulation Journal 医学-心血管系统
CiteScore
5.80
自引率
12.10%
发文量
471
审稿时长
1.6 months
期刊介绍: Circulation publishes original research manuscripts, review articles, and other content related to cardiovascular health and disease, including observational studies, clinical trials, epidemiology, health services and outcomes studies, and advances in basic and translational research.
期刊最新文献
Evolving Paradigms in Home Left Ventricular Assist Device Therapy - Reducing Caregiver Burden in the Era of Advanced Technology. Impact of High-Sensitivity Cardiac Troponin T on Clinical Outcomes in Patients With Cardiac Sarcoidosis. Reduced Pulmonary Artery Compliance in a Conscious State Predicts Cardiac Event After Transcatheter Edge-to-Edge Repair in Patients With Ventricular Secondary Mitral Regurgitation. Validity of HELT-E2S2 Score in Predicting Ischemic Stroke in Japanese Patients With Non-Valvular Atrial Fibrillation With Cardiac Implantable Electronic Devices. Digitalomics: Towards Artificial Intelligence / Machine Learning-Based Precision Cardiovascular Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1