Anne-Kathrin Kleine , Eesha Kokje , Pia Hummelsberger , Eva Lermer , Insa Schaffernak , Susanne Gaube
{"title":"AI-enabled clinical decision support tools for mental healthcare: A product review","authors":"Anne-Kathrin Kleine , Eesha Kokje , Pia Hummelsberger , Eva Lermer , Insa Schaffernak , Susanne Gaube","doi":"10.1016/j.artmed.2024.103052","DOIUrl":null,"url":null,"abstract":"<div><div>The review seeks to promote transparency in the availability of regulated AI-enabled Clinical Decision Support Systems (AI-CDSS) for mental healthcare. From 84 potential products, seven fulfilled the inclusion criteria. The products can be categorized into three major areas: diagnosis of autism spectrum disorder (ASD) based on clinical history, behavioral, and eye-tracking data; diagnosis of multiple disorders based on conversational data; and medication selection based on clinical history and genetic data. We found five scientific articles evaluating the devices' performance and external validity. The average completeness of reporting, indicated by 52 % adherence to the Consolidated Standards of Reporting Trials Artificial Intelligence (CONSORT-AI) checklist, was modest, signaling room for improvement in reporting quality. Our findings stress the importance of obtaining regulatory approval, adhering to scientific standards, and staying up-to-date with the latest changes in the regulatory landscape. Refining regulatory guidelines and implementing effective tracking systems for AI-CDSS could enhance transparency and oversight in the field.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"160 ","pages":"Article 103052"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S093336572400294X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The review seeks to promote transparency in the availability of regulated AI-enabled Clinical Decision Support Systems (AI-CDSS) for mental healthcare. From 84 potential products, seven fulfilled the inclusion criteria. The products can be categorized into three major areas: diagnosis of autism spectrum disorder (ASD) based on clinical history, behavioral, and eye-tracking data; diagnosis of multiple disorders based on conversational data; and medication selection based on clinical history and genetic data. We found five scientific articles evaluating the devices' performance and external validity. The average completeness of reporting, indicated by 52 % adherence to the Consolidated Standards of Reporting Trials Artificial Intelligence (CONSORT-AI) checklist, was modest, signaling room for improvement in reporting quality. Our findings stress the importance of obtaining regulatory approval, adhering to scientific standards, and staying up-to-date with the latest changes in the regulatory landscape. Refining regulatory guidelines and implementing effective tracking systems for AI-CDSS could enhance transparency and oversight in the field.
期刊介绍:
Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care.
Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.