NMFAD: Neighbor-Aware Mask-Filling Attributed Network Anomaly Detection

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-12-12 DOI:10.1109/TIFS.2024.3516570
Liang Xi;Runze Li;Menghan Li;Dehua Miao;Ruidong Wang;Zygmunt J. Haas
{"title":"NMFAD: Neighbor-Aware Mask-Filling Attributed Network Anomaly Detection","authors":"Liang Xi;Runze Li;Menghan Li;Dehua Miao;Ruidong Wang;Zygmunt J. Haas","doi":"10.1109/TIFS.2024.3516570","DOIUrl":null,"url":null,"abstract":"As a widely adopted protocol for anomaly detection in attributed networks, reconstruction error prioritizes comprehensive feature extraction to detect anomalies over interrogating the differential representation between normal and abnormal nodes. Intuitively, in attributed networks, normal nodes and their neighbors often exhibit similarities, whereas abnormal nodes demonstrate behaviors distinct from their neighbors. Hence, normal nodes can be accurately represented through their neighbors and effectively reconstructed. As opposed to normal nodes, abnormal nodes represented by their neighbors may be erroneously reconstructed as normal, resulting in increased reconstruction error. Leveraging from this observation, we propose a novel anomaly detection protocol called Neighbor-aware Mask-Filling Anomaly Detection (NMFAD) for attributed networks, aiming to maximize the variability between original and reconstructed features of abnormal nodes filled with information from their neighbors. Specifically, we utilize random-mask on nodes and integrate them into the backbone Graph Neural Networks (GNNs) to map nodes into a latent space. Subsequently, we fill the masked nodes with embeddings from their neighbors and smooth the abnormal nodes closer to the distribution of normal nodes. This optimization improves the likelihood of the decoder to reconstructing abnormal nodes as normal, thereby maximizing the reconstruction error of abnormal nodes. Experimental results demonstrate that, compared to the existing models, NMFAD exhibits superior performance.in attributed networks.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"364-374"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10795163/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

As a widely adopted protocol for anomaly detection in attributed networks, reconstruction error prioritizes comprehensive feature extraction to detect anomalies over interrogating the differential representation between normal and abnormal nodes. Intuitively, in attributed networks, normal nodes and their neighbors often exhibit similarities, whereas abnormal nodes demonstrate behaviors distinct from their neighbors. Hence, normal nodes can be accurately represented through their neighbors and effectively reconstructed. As opposed to normal nodes, abnormal nodes represented by their neighbors may be erroneously reconstructed as normal, resulting in increased reconstruction error. Leveraging from this observation, we propose a novel anomaly detection protocol called Neighbor-aware Mask-Filling Anomaly Detection (NMFAD) for attributed networks, aiming to maximize the variability between original and reconstructed features of abnormal nodes filled with information from their neighbors. Specifically, we utilize random-mask on nodes and integrate them into the backbone Graph Neural Networks (GNNs) to map nodes into a latent space. Subsequently, we fill the masked nodes with embeddings from their neighbors and smooth the abnormal nodes closer to the distribution of normal nodes. This optimization improves the likelihood of the decoder to reconstructing abnormal nodes as normal, thereby maximizing the reconstruction error of abnormal nodes. Experimental results demonstrate that, compared to the existing models, NMFAD exhibits superior performance.in attributed networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NMFAD:邻居感知掩码填充归因网络异常现象检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Privacy and Fairness Analysis in the Post-Processed Differential Privacy Framework TextSafety: Visual Text Vanishing via Hierarchical Context-aware Interaction Reconstruction Progressive Cross-modal Association Learning for Unsupervised Visible-Infrared Person Re-Identification Enhancing the Transferability of Adversarial Attacks via Multi-Feature Attention Optimal Client Selection of Federated Learning Based on Compressed Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1