Global or Local Adaptation? Client-Sampled Federated Meta-Learning for Personalized IoT Intrusion Detection

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-12-12 DOI:10.1109/TIFS.2024.3516548
Haorui Yan;Xi Lin;Shenghong Li;Hao Peng;Bo Zhang
{"title":"Global or Local Adaptation? Client-Sampled Federated Meta-Learning for Personalized IoT Intrusion Detection","authors":"Haorui Yan;Xi Lin;Shenghong Li;Hao Peng;Bo Zhang","doi":"10.1109/TIFS.2024.3516548","DOIUrl":null,"url":null,"abstract":"With the increasing size of Internet of Things (IoT) devices, cyber threats to IoT systems have increased. Federated learning (FL) has been implemented in an anomaly-based intrusion detection system (NIDS) to detect malicious traffic in IoT devices and counter the threat. However, current FL-based NIDS mainly focuses on global model performance and lacks personalized performance improvement for local data. To address this issue, we propose a novel personalized federated meta-learning intrusion detection approach (PerFLID), which allows multiple participants to personalize their local detection models for local adaptation. PerFLID shifts the goal of the personalized detection task to training a local model suitable for the client’s specific data, rather than a global model. To meet the real-time requirements of NIDS, PerFLID further refines the client selection strategy by clustering the local gradient similarities to find the nodes that contribute the most to the global model per global round. PerFLID can select the nodes that accelerate the convergence of the model, and we theoretically analyze the improvement in the convergence speed of this strategy over the personalized federated learning algorithm. We experimentally evaluate six existing FL-NIDS approaches on three real network traffic datasets and show that our PerFLID approach outperforms all baselines in detecting local adaptation accuracy by 10.11% over the state-of-the-art scheme, accelerating the convergence speed under various parameter combinations.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"279-293"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10795221/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing size of Internet of Things (IoT) devices, cyber threats to IoT systems have increased. Federated learning (FL) has been implemented in an anomaly-based intrusion detection system (NIDS) to detect malicious traffic in IoT devices and counter the threat. However, current FL-based NIDS mainly focuses on global model performance and lacks personalized performance improvement for local data. To address this issue, we propose a novel personalized federated meta-learning intrusion detection approach (PerFLID), which allows multiple participants to personalize their local detection models for local adaptation. PerFLID shifts the goal of the personalized detection task to training a local model suitable for the client’s specific data, rather than a global model. To meet the real-time requirements of NIDS, PerFLID further refines the client selection strategy by clustering the local gradient similarities to find the nodes that contribute the most to the global model per global round. PerFLID can select the nodes that accelerate the convergence of the model, and we theoretically analyze the improvement in the convergence speed of this strategy over the personalized federated learning algorithm. We experimentally evaluate six existing FL-NIDS approaches on three real network traffic datasets and show that our PerFLID approach outperforms all baselines in detecting local adaptation accuracy by 10.11% over the state-of-the-art scheme, accelerating the convergence speed under various parameter combinations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球适应还是局部适应?个性化物联网入侵检测的客户端抽样联邦元学习
随着物联网(IoT)设备规模的不断扩大,对物联网系统的网络威胁也在增加。联邦学习(FL)已在基于异常的入侵检测系统(NIDS)中实现,用于检测物联网设备中的恶意流量并应对威胁。然而,目前基于fl的NIDS主要关注全局模型性能,缺乏针对局部数据的个性化性能提升。为了解决这个问题,我们提出了一种新的个性化联邦元学习入侵检测方法(PerFLID),该方法允许多个参与者个性化他们的本地检测模型以适应本地。PerFLID将个性化检测任务的目标转移到训练适合客户特定数据的局部模型,而不是全局模型。为了满足NIDS的实时性要求,PerFLID进一步细化客户端选择策略,通过对局部梯度相似度进行聚类,找到每全局轮对全局模型贡献最大的节点。PerFLID可以选择加速模型收敛的节点,并从理论上分析了该策略相对于个性化联邦学习算法在收敛速度上的改进。我们在三个真实网络流量数据集上对六种现有的FL-NIDS方法进行了实验评估,结果表明,我们的PerFLID方法在检测局部自适应精度方面优于所有基线,比最先进的方案提高了10.11%,加快了各种参数组合下的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
Einocchio: Efficiently Outsourcing Polynomial Computation with Verifiable Computation and Optimized Newton Interpolation VULSEYE: Detect Smart Contract Vulnerabilities via Stateful Directed Graybox Fuzzing Adversarial Example Soups: Improving Transferability and Stealthiness for Free Enhancing Federated Learning Robustness using Locally Benignity-Assessable Bayesian Dropout Differential Privacy with Higher Utility by Exploiting Coordinate-wise Disparity: Laplace Mechanism Can Beat Gaussian in High Dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1