Privacy-Preserving Generative Modeling With Sliced Wasserstein Distance

IF 6.3 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Information Forensics and Security Pub Date : 2024-12-12 DOI:10.1109/TIFS.2024.3516549
Ziniu Liu;Han Yu;Kai Chen;Aiping Li
{"title":"Privacy-Preserving Generative Modeling With Sliced Wasserstein Distance","authors":"Ziniu Liu;Han Yu;Kai Chen;Aiping Li","doi":"10.1109/TIFS.2024.3516549","DOIUrl":null,"url":null,"abstract":"Large models require larger datasets. While people gain from using massive amounts of data to train large models, they must be concerned about privacy issues. To address this issue, we propose a novel approach for private generative modeling using the Sliced Wasserstein Distance (SWD) metric in a Differential Private (DP) manner. We propose Normalized Clipping, a parameter-free clipping technique that generates higher-quality images. We demonstrate the advantages of Normalized Clipping over the traditional clipping method in parameter tuning and model performance through experiments. Moreover, experimental results indicate that our model outperforms previous methods in differentially private image generation tasks.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"1011-1022"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10795203/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Large models require larger datasets. While people gain from using massive amounts of data to train large models, they must be concerned about privacy issues. To address this issue, we propose a novel approach for private generative modeling using the Sliced Wasserstein Distance (SWD) metric in a Differential Private (DP) manner. We propose Normalized Clipping, a parameter-free clipping technique that generates higher-quality images. We demonstrate the advantages of Normalized Clipping over the traditional clipping method in parameter tuning and model performance through experiments. Moreover, experimental results indicate that our model outperforms previous methods in differentially private image generation tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Wasserstein距离的隐私保护生成建模
大型模型需要更大的数据集。虽然人们从使用大量数据来训练大型模型中获益,但他们必须关注隐私问题。为了解决这个问题,我们提出了一种新的私有生成建模方法,使用差分私有(DP)方式的切片沃瑟斯坦距离(SWD)度量。我们提出了归一化裁剪,这是一种无参数的裁剪技术,可以生成更高质量的图像。通过实验证明了归一化裁剪方法在参数整定和模型性能方面优于传统的裁剪方法。此外,实验结果表明,我们的模型在差分私有图像生成任务中优于以往的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
期刊最新文献
SMSSE: Size-pattern Mitigation Searchable Symmetric Encryption Privacy for Free: Spy Attack in Vertical Federated Learning by Both Active and Passive Parties All Points Guided Adversarial Generator for Targeted Attack Against Deep Hashing Retrieval Anonymous and Efficient (t, n)-Threshold Ownership Transfer for Cloud EMRs Auditing Query Correlation Attack against Searchable Symmetric Encryption with Supporting for Conjunctive Queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1