Weakly Solvating Electrolytes for Safe and Fast-Charging Sodium Metal Batteries

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-12-13 DOI:10.1021/jacs.4c12353
Mingzhu Wu, Mingchen Yang, Jiangtao Yu, Xinyu Ma, Shipeng Sun, Yupo She, Jinhua Yang, Xiuyang Zou, Yin Hu, Feng Yan
{"title":"Weakly Solvating Electrolytes for Safe and Fast-Charging Sodium Metal Batteries","authors":"Mingzhu Wu, Mingchen Yang, Jiangtao Yu, Xinyu Ma, Shipeng Sun, Yupo She, Jinhua Yang, Xiuyang Zou, Yin Hu, Feng Yan","doi":"10.1021/jacs.4c12353","DOIUrl":null,"url":null,"abstract":"Electrolytes for high-performance sodium metal batteries (SMBs) are expected to have high electrode compatibility, low solvation energy, and nonflammability. However, conventional flammable carbonate ester electrolytes show high Na<sup>+</sup> desolvation energy and poor compatibility with sodium metal anodes, leading to slow Faradaic reactions and significant degradation of SMBs. Herein, we report a weakly solvating electrolytes (WSEs) design developed by an ionized ether-induced solvent molecule polarization strategy. The steric hindrance and electron-withdrawing effect of the pyrrolidine cation weaken the solvation ability of the ionized ether and enable carbonate ester with low solvation energy through intermolecular polarization interactions. It enables WSEs with fast Na<sup>+</sup> migration kinetics and electric-field-reinforced cationic electrode/electrolyte interface, thereby promoting the stability and reversibility of SMBs even under high-charge-rate conditions. The Na||Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> battery with ionized ether-based WSEs exhibits a capacity retention of 83.5% with an average Coulombic efficiency (CE) of 99.69% after 500 cycles at 10C. Furthermore, the Na||Na<sub>2</sub>Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub> cells maintained 92.8% capacity retention after 1000 cycles at 5C with an average CE of 99.77% at a cutoff voltage of 4.5 V. The ionized ether also eliminates the fire and safety risks associated with WSEs. This work offers valuable insights into the design of WSEs for safe and high-performance sodium metal batteries.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"29 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12353","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolytes for high-performance sodium metal batteries (SMBs) are expected to have high electrode compatibility, low solvation energy, and nonflammability. However, conventional flammable carbonate ester electrolytes show high Na+ desolvation energy and poor compatibility with sodium metal anodes, leading to slow Faradaic reactions and significant degradation of SMBs. Herein, we report a weakly solvating electrolytes (WSEs) design developed by an ionized ether-induced solvent molecule polarization strategy. The steric hindrance and electron-withdrawing effect of the pyrrolidine cation weaken the solvation ability of the ionized ether and enable carbonate ester with low solvation energy through intermolecular polarization interactions. It enables WSEs with fast Na+ migration kinetics and electric-field-reinforced cationic electrode/electrolyte interface, thereby promoting the stability and reversibility of SMBs even under high-charge-rate conditions. The Na||Na3V2(PO4)3 battery with ionized ether-based WSEs exhibits a capacity retention of 83.5% with an average Coulombic efficiency (CE) of 99.69% after 500 cycles at 10C. Furthermore, the Na||Na2Fe2(SO4)3 cells maintained 92.8% capacity retention after 1000 cycles at 5C with an average CE of 99.77% at a cutoff voltage of 4.5 V. The ionized ether also eliminates the fire and safety risks associated with WSEs. This work offers valuable insights into the design of WSEs for safe and high-performance sodium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Triphenylphosphine Oxide-Derived Anolyte for Application in Nonaqueous Redox Flow Battery Isolation of Inner-Sphere Aquo Complexes of Samarium(II) Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer Structure–Optical Properties Relationships in Cobalt-Based Purple Pigments Used by Robert Delaunay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1