A Scalable Pore-Space-Partitioned Metal-Organic Framework Powered by Polycatenation Strategy for Efficient Acetylene Purification

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-12-13 DOI:10.1002/anie.202421992
Zhen-Hua Guo, Xue-Qian Wu, Ya-Pan Wu, Dong-Sheng Li, Guoping Yang, Yao-Yu Wang
{"title":"A Scalable Pore-Space-Partitioned Metal-Organic Framework Powered by Polycatenation Strategy for Efficient Acetylene Purification","authors":"Zhen-Hua Guo, Xue-Qian Wu, Ya-Pan Wu, Dong-Sheng Li, Guoping Yang, Yao-Yu Wang","doi":"10.1002/anie.202421992","DOIUrl":null,"url":null,"abstract":"Efficient separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) is a significant challenge in the petrochemical industry due to their similar physicochemical properties. Pore space partition (PSP) has shown promise in enhancing gas adsorption capacity and selectivity by reducing pore size and increasing the density of guest binding sites. Herein, we firstly employ the 2D→3D polycatenation strategy to construct a PSP metal-organic framework (MOF) Ni-dcpp-bpy, incorporating functional N/O sites to enhance C2H2 purification. The polycatenated framework with optimized pore size and regularity, exhibiting significant improvements over traditional PSP MOFs by resolving the critical contradiction of balancing C2H2 uptake (98.5 cm3 g-1 at 298 K, 100 kPa) and selectivity of C2H2/CO2 (3.4), C2H2/C2H4 (5.9), and C2H2/CH4 (96.4) in a MOF. Breakthrough experiments confirm high-purity C2H4 (> 99.9%) and high C2H2 productivity from binary and ternary mixtures. Notably, Ni-dcpp-bpy exhibits excellent water stability, scalability, and regenerability after 20 cycles for separating C2H2/CO2. Theoretical calculations verify that the strong binding of C2H2 is mainly attributed to the C−H···O/N interactions between host Ni-dcpp-bpy and guest C2H2 molecules. The polycatenation strategy not only improved industrial C2H2 purification efficiency but also enriched the design diversity of customized MOFs for other gas separation applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"30 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient separation of acetylene (C2H2) from carbon dioxide (CO2) and ethylene (C2H4) is a significant challenge in the petrochemical industry due to their similar physicochemical properties. Pore space partition (PSP) has shown promise in enhancing gas adsorption capacity and selectivity by reducing pore size and increasing the density of guest binding sites. Herein, we firstly employ the 2D→3D polycatenation strategy to construct a PSP metal-organic framework (MOF) Ni-dcpp-bpy, incorporating functional N/O sites to enhance C2H2 purification. The polycatenated framework with optimized pore size and regularity, exhibiting significant improvements over traditional PSP MOFs by resolving the critical contradiction of balancing C2H2 uptake (98.5 cm3 g-1 at 298 K, 100 kPa) and selectivity of C2H2/CO2 (3.4), C2H2/C2H4 (5.9), and C2H2/CH4 (96.4) in a MOF. Breakthrough experiments confirm high-purity C2H4 (> 99.9%) and high C2H2 productivity from binary and ternary mixtures. Notably, Ni-dcpp-bpy exhibits excellent water stability, scalability, and regenerability after 20 cycles for separating C2H2/CO2. Theoretical calculations verify that the strong binding of C2H2 is mainly attributed to the C−H···O/N interactions between host Ni-dcpp-bpy and guest C2H2 molecules. The polycatenation strategy not only improved industrial C2H2 purification efficiency but also enriched the design diversity of customized MOFs for other gas separation applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Photoswitchable Topological Regulation of Covalent Macrocycles, Molecular Recognition, and Interlocked Structures In-situ Growth of Metallocluster inside Heterometal–organic Cage to Switch Electron Transfer for Targeted CO2 Photoreduction Constrained Heterogeneous CoFe2O4/ZnO/PMS Fenton-Like System for Industrial Wastewater Remediation with Recyclability and Zero Metal Loss Photoredox/Cobalt‐Catalyzed Chemo‐, Regio‐, Diastereo‐ and Enantioselective Reductive Coupling of 1,1‐Disubstituted Allenes and Cyclobutenes Modular Access to Silicon‐Containing Amino Acids and Peptides by Cobalt Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1