Position-Regulated Electrostatic Interactions for Single Amino Acid Revealed by Aspartic Acid-Scanning Mutagenesis

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2024-12-12 DOI:10.1002/cbic.202400891
Dr. Mengting Chen, Dr. Lilusi Ma, Minxian Li, Dr. Xiaocui Fang, Prof. Yanlian Yang, Prof. Chen Wang
{"title":"Position-Regulated Electrostatic Interactions for Single Amino Acid Revealed by Aspartic Acid-Scanning Mutagenesis","authors":"Dr. Mengting Chen,&nbsp;Dr. Lilusi Ma,&nbsp;Minxian Li,&nbsp;Dr. Xiaocui Fang,&nbsp;Prof. Yanlian Yang,&nbsp;Prof. Chen Wang","doi":"10.1002/cbic.202400891","DOIUrl":null,"url":null,"abstract":"<p>We have examined in this contribution the electrostatic interactions between single arginine and aspartic acid by analyzing the peptide-peptide binding characteristics involving arginine-aspartic acid, arginine-glycine, arginine-tryptophan and tryptophan-glycine interactions. The results of aspartic acid mutagenesis revealed that the interactions between arginine and aspartic acid have significant dependence on the position and composition of amino acids. While the primary interaction can be attributed to arginine-tryptophan contacts originated from the indole moieties with the main chains of 14-mers containing N−H and C=O moieties, pronounced enhancement could be identified in association with the electrostatic side-chain-side-chain interactions between arginine and aspartic acid. An optimal separation of 2~4 amino acids between two adjacent aspartic acid and tryptophan binding sites can be identified to achieve maximal enhancement of binding interactions. Such observed separation dependence may be utilized to unravel cooperative effects in heterogeneous interactions between single pair of amino acids.</p>","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbic.202400891","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We have examined in this contribution the electrostatic interactions between single arginine and aspartic acid by analyzing the peptide-peptide binding characteristics involving arginine-aspartic acid, arginine-glycine, arginine-tryptophan and tryptophan-glycine interactions. The results of aspartic acid mutagenesis revealed that the interactions between arginine and aspartic acid have significant dependence on the position and composition of amino acids. While the primary interaction can be attributed to arginine-tryptophan contacts originated from the indole moieties with the main chains of 14-mers containing N−H and C=O moieties, pronounced enhancement could be identified in association with the electrostatic side-chain-side-chain interactions between arginine and aspartic acid. An optimal separation of 2~4 amino acids between two adjacent aspartic acid and tryptophan binding sites can be identified to achieve maximal enhancement of binding interactions. Such observed separation dependence may be utilized to unravel cooperative effects in heterogeneous interactions between single pair of amino acids.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天冬氨酸扫描诱变揭示的单氨基酸位置调节静电相互作用。
在这篇文章中,我们通过分析精氨酸-天冬氨酸、精氨酸-甘氨酸、精氨酸-色氨酸和色氨酸-甘氨酸相互作用的肽肽结合特性,研究了单精氨酸和天冬氨酸之间的静电相互作用。天冬氨酸诱变的结果表明,精氨酸与天冬氨酸的相互作用与氨基酸的位置和组成有显著的依赖关系。虽然主要的相互作用可以归因于精氨酸-色氨酸的接触,这种接触源于吲哚部分,14-mers的主链含有N-H和C=O部分,但明显的增强可以确定与精氨酸和天冬氨酸之间的静电侧链-侧链相互作用有关。在两个相邻的天冬氨酸和色氨酸结合位点之间,可以确定2~4个氨基酸的最佳分离,以最大限度地增强结合相互作用。这种观察到的分离依赖性可以用来揭示单对氨基酸之间的异质相互作用中的合作效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Mutagenesis to Orient Conjugation and Preserve Self-adjuvant Properties of Flagellin in Conjugates. Cyclization of Short Peptides Designed from Late Embryogenesis Abundant Protein to Improve Stability and Functionality. A Practical Approach for Polarity and Quantity Controlled Assembly of Membrane Proteins into Nanoliposomes. A viscoelastic supramolecular hydrogel co-assembled from gatifloxacin and deoxyguanosine for the treatment of bacterial keratitis. Lanthanides Gd and Tm Can Inhibit Carnitine/Acylcarnitine Transporter: Insights from All-Atoms Simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1