Heteroatom-Based Ligand Engineering of Metal Organic Frameworks for Efficient and Robust Electrochemical Water Oxidation

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-12-13 DOI:10.1002/cssc.202402112
Hong-Yi Tan, Bing-Hao Wang, Meng-Yi Xu, Zhi-Yong Peng, Wen-Juan Wu, Sheng Shen, Shuang-Feng Yin
{"title":"Heteroatom-Based Ligand Engineering of Metal Organic Frameworks for Efficient and Robust Electrochemical Water Oxidation","authors":"Hong-Yi Tan,&nbsp;Bing-Hao Wang,&nbsp;Meng-Yi Xu,&nbsp;Zhi-Yong Peng,&nbsp;Wen-Juan Wu,&nbsp;Sheng Shen,&nbsp;Shuang-Feng Yin","doi":"10.1002/cssc.202402112","DOIUrl":null,"url":null,"abstract":"<p>Metal-organic frameworks (MOFs) are promising catalysts for the electrochemical oxygen evolution reaction (OER) due to their high surface area, tunable pore structures, and abundant active sites. Ligand engineering is an important strategy to optimize their performance. Here, we report the synthesis of NiFe-MOFs based on three different ligands: 1,4-terephthalic acid (BDC), 2,4-thiophene dicarboxylic acid (TDC), and 2,5-furandicarboxylic acid (FDC), to investigate the effects of heteroatom-based aromatic rings on OER performance. It is revealed that by incorporating electronegative sulfur and oxygen atoms into the ligands, the electron density at the metal sites is reduced, leading to enhanced metal-oxygen covalency and improved charge transfer kinetics. The NiFe-FDC/NF catalyst demonstrates an overpotential of 189 mV at 10 mA⋅cm<sup>−2</sup> and stable performance over 1300 hours at 1 A cm<sup>−2</sup>. In situ infrared spectroscopy reveal minimal structural reconstruction in NiFe-FDC/NF, contributing to its superior stability. The NiFe-FDC/NF were then subjected to 3600 hours of OER operation and it's metal elution was monitored. These findings offer a novel approach to ligand design for high-performance MOF-based OER catalysts, highlighting the potential of furan-based ligands for MOF ligand engineering.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 9","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202402112","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) are promising catalysts for the electrochemical oxygen evolution reaction (OER) due to their high surface area, tunable pore structures, and abundant active sites. Ligand engineering is an important strategy to optimize their performance. Here, we report the synthesis of NiFe-MOFs based on three different ligands: 1,4-terephthalic acid (BDC), 2,4-thiophene dicarboxylic acid (TDC), and 2,5-furandicarboxylic acid (FDC), to investigate the effects of heteroatom-based aromatic rings on OER performance. It is revealed that by incorporating electronegative sulfur and oxygen atoms into the ligands, the electron density at the metal sites is reduced, leading to enhanced metal-oxygen covalency and improved charge transfer kinetics. The NiFe-FDC/NF catalyst demonstrates an overpotential of 189 mV at 10 mA⋅cm−2 and stable performance over 1300 hours at 1 A cm−2. In situ infrared spectroscopy reveal minimal structural reconstruction in NiFe-FDC/NF, contributing to its superior stability. The NiFe-FDC/NF were then subjected to 3600 hours of OER operation and it's metal elution was monitored. These findings offer a novel approach to ligand design for high-performance MOF-based OER catalysts, highlighting the potential of furan-based ligands for MOF ligand engineering.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于杂原子的金属有机框架配体工程用于高效和稳健的电化学水氧化。
金属有机骨架(MOFs)具有高比表面积、可调节的孔结构和丰富的活性位点,是电化学析氧反应(OER)的重要催化剂。配体工程是优化其性能的重要策略。本文以1,4-对苯二甲酸(BDC)、2,4-噻吩二羧酸(TDC)和2,5-呋喃二羧酸(FDC)为配体合成了nfe - mof,并研究了杂原子芳香环对OER性能的影响。结果表明,通过在配体中加入电负性硫原子和氧原子,金属位点的电子密度降低,导致金属-氧共价增强和电荷转移动力学改善。nfe - fdc /NF催化剂在10 mA·cm-2下的过电位为189 mV,在1 A·cm-2下的稳定性能超过1300小时。原位红外光谱显示nfe - fdc /NF的结构重构最小,这有助于其优越的稳定性。然后对nfe - fdc /NF进行3600小时的OER操作,监测其金属洗脱情况。这些发现为高性能MOF基OER催化剂的配体设计提供了一种新的方法,突出了呋喃基配体在MOF配体工程中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
2,5-Furandicarboxylic acid
阿拉丁
2,5-Thiophenedicarboxylic acid
阿拉丁
Terephthalic acid
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Harnessing Sustainable Biopolymers: Engineered Alginate-Based Materials for Whole-Cell Environmental Remediation. One-Pot Morita-Baylis-Hillman/Allylic Substitution in Deep Eutectic Solvents: Access to γ-Hydroxy Derivatives via Sequential CC and CX (X = P, N, S, B, Si) Bond Formation. Alkynes Hydration in Three-Component Double-Acidic Deep Eutectic Solvents. The Silk Route to Green Catalysis: Silk Fibroin as a Recyclable Ligand for Iron-Catalyzed Olefin Epoxidation. Constraint of Reaction Intermediates in Ag@Cu2O Porous Core-Shell Nanospheres Toward Boosted CO2 Electroreduction to C2H4.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1