In-situ construction of vertically Fe doped CoMoP nanosheet honeycomb as bifunctional electrocatalysts for efficient overall water splitting

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-12-09 DOI:10.1016/j.jcis.2024.12.045
Bingxin Zhao , Wenyue Jiang , Ziting Li , Peng Zhou , Xiaoshuang Chen , Jinping Wang , Rui Yang , Chunling Zuo
{"title":"In-situ construction of vertically Fe doped CoMoP nanosheet honeycomb as bifunctional electrocatalysts for efficient overall water splitting","authors":"Bingxin Zhao ,&nbsp;Wenyue Jiang ,&nbsp;Ziting Li ,&nbsp;Peng Zhou ,&nbsp;Xiaoshuang Chen ,&nbsp;Jinping Wang ,&nbsp;Rui Yang ,&nbsp;Chunling Zuo","doi":"10.1016/j.jcis.2024.12.045","DOIUrl":null,"url":null,"abstract":"<div><div>The bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) are crucial pivot in water electrolysis territory. In this study, vertically Fe incorporated CoMoP (Fe-CoMoP) nanosheet honeycomb product with super-hydrophilic and aerophobic features was projected and generated through the straightforward hydrothermal technique and phosphatized process. The Fe-CoMoP catalyst exhibits more distinguished intrinsic activity, accessible active sites, effective charge transfer and weak adhesion of gas bubbles. The overpotentials of dual-function Fe-CoMoP are 87.1 mV for HER and 244.4 mV for OER to drive the current density of 10 mA cm<sup>−2</sup>. At room temperature, the overall water splitting reaction of Fe-CoMoP as cathode and anode is carried out at 1.54 V to reach 10 mA cm<sup>−2</sup> with good stability. Simultaneously, the Fe-CoMoP couple electrolyzer also presents remarkable water splitting activity and durability in simulated industry circumstances of 6 M KOH, 60 °C at 500 mA cm<sup>−2</sup>, which are close to practical conditions.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"Pages 1094-1103"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724028972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) are crucial pivot in water electrolysis territory. In this study, vertically Fe incorporated CoMoP (Fe-CoMoP) nanosheet honeycomb product with super-hydrophilic and aerophobic features was projected and generated through the straightforward hydrothermal technique and phosphatized process. The Fe-CoMoP catalyst exhibits more distinguished intrinsic activity, accessible active sites, effective charge transfer and weak adhesion of gas bubbles. The overpotentials of dual-function Fe-CoMoP are 87.1 mV for HER and 244.4 mV for OER to drive the current density of 10 mA cm−2. At room temperature, the overall water splitting reaction of Fe-CoMoP as cathode and anode is carried out at 1.54 V to reach 10 mA cm−2 with good stability. Simultaneously, the Fe-CoMoP couple electrolyzer also presents remarkable water splitting activity and durability in simulated industry circumstances of 6 M KOH, 60 °C at 500 mA cm−2, which are close to practical conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位构建垂直掺铁CoMoP纳米片蜂窝双功能电催化剂用于高效整体水分解。
氢析氧反应的双功能电催化剂(HER和OER)是水电解领域的重要支点。本研究通过直接水热法和磷化工艺,对具有超亲水性和疏气特性的垂直含铁CoMoP (Fe-CoMoP)纳米片蜂窝产品进行了投影和制备。Fe-CoMoP催化剂表现出更明显的本征活性、可接近的活性位点、有效的电荷转移和较弱的气泡粘附。双功能Fe-CoMoP驱动电流密度为10 mA cm-2时,HER过电位为87.1 mV, OER过电位为244.4 mV。在室温下,Fe-CoMoP作为正极和负极在1.54 V下进行整体水分解反应,达到10 mA cm-2,稳定性良好。同时,Fe-CoMoP偶极电解槽在6 M KOH, 60°C, 500 mA cm-2的模拟工业环境下也表现出良好的水分解活性和耐久性,接近实际条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Cobalt nitrate hexahydrate [Co(NO3)2·6H2O]
阿拉丁
Ferric nitrate nonahydrate
阿拉丁
Cobalt nitrate hexahydrate
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
A double-confined strategy for enhancing the pseudocapacitance performance of nickel-based sulfides-unveiling aqueous pseudocapacitive energy storage mechanism. Enhanced photocatalytic H2O2 production via a facile atomic diffusion strategy near tammann temperature for single atom photocatalysts. Synergistic removal of chromium(VI) and tetracycline by porous carbon sponges embedded with MoS2: Performance and radical mechanism of piezoelectric catalysis. Molten salt synthesis of 1T phase dominated O-MoS2 for enhancing photocatalytic hydrogen production performance of CdS via Ohmic junction. Awakening n-π* electron transition in structurally distorted g-C3N4 nanosheets via hexamethylenetetramine-involved supercritical CO2 treatment towards efficient photocatalytic H2 production.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1