Quaternary arrangements of membrane proteins: an aquaporin case.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Society transactions Pub Date : 2024-12-19 DOI:10.1042/BST20241630
Maria Hrmova
{"title":"Quaternary arrangements of membrane proteins: an aquaporin case.","authors":"Maria Hrmova","doi":"10.1042/BST20241630","DOIUrl":null,"url":null,"abstract":"<p><p>Integral polytopic α-helical membrane transporters and aquaporins move and distribute various molecules and dispose of or compartmentalize harmful elements that gather in living cells. The view shaped nearly 25 years ago states that integrating these proteins into cellular membranes can be considered a two-stage process, with hydrophobic core folding into α-helices across membranes to form functional entities (Popot and Engelman, 1990; Biochemistry29, 4031-4037). Since then, a large body of evidence cemented the roles of structural properties of membrane proteins and bilayer solvent components in forming functional assemblies. This mini-review updates our understanding of multifaced factors, which underlie transporters integration and oligomerization, focusing on water-permeating aquaporins. This work also elaborates on how individual monomers of bacterial and mammalian aquaporin tetramers, interact with each other, and how tetramers form contacts with lipids after being embedded in lipid bilayers of known composition, which mimics bacterial and mammalian membranes. Although this mini-review describes findings acquired using current methods, the view is open to how to extend this knowledge through, e.g. single-molecule-based and in situ cryogenic-electron tomography techniques. These and other methods could unravel the sources of entropy for membrane protein assemblies and pathways underlying integration, folding, oligomerization and quaternary structure formation with binding partners. We could expect that these exceedingly interdisciplinary approaches will form the basis for creating optimized transport systems, which could inspire bioengineering to develop a sustainable and healthy society.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":"2557-2568"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11668299/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20241630","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Integral polytopic α-helical membrane transporters and aquaporins move and distribute various molecules and dispose of or compartmentalize harmful elements that gather in living cells. The view shaped nearly 25 years ago states that integrating these proteins into cellular membranes can be considered a two-stage process, with hydrophobic core folding into α-helices across membranes to form functional entities (Popot and Engelman, 1990; Biochemistry29, 4031-4037). Since then, a large body of evidence cemented the roles of structural properties of membrane proteins and bilayer solvent components in forming functional assemblies. This mini-review updates our understanding of multifaced factors, which underlie transporters integration and oligomerization, focusing on water-permeating aquaporins. This work also elaborates on how individual monomers of bacterial and mammalian aquaporin tetramers, interact with each other, and how tetramers form contacts with lipids after being embedded in lipid bilayers of known composition, which mimics bacterial and mammalian membranes. Although this mini-review describes findings acquired using current methods, the view is open to how to extend this knowledge through, e.g. single-molecule-based and in situ cryogenic-electron tomography techniques. These and other methods could unravel the sources of entropy for membrane protein assemblies and pathways underlying integration, folding, oligomerization and quaternary structure formation with binding partners. We could expect that these exceedingly interdisciplinary approaches will form the basis for creating optimized transport systems, which could inspire bioengineering to develop a sustainable and healthy society.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膜蛋白的四级排列:水蒸发蛋白案例。
整体多面体α-螺旋膜转运蛋白和水通道蛋白移动和分布各种分子,并处理或分隔聚集在活细胞中的有害元素。近25年前形成的观点认为,将这些蛋白质整合到细胞膜上可以被认为是一个两阶段的过程,疏水核心折叠成跨越膜的α-螺旋,形成功能实体(Popot和Engelman, 1990;Biochemistry29, 4031 - 4037)。从那时起,大量的证据巩固了膜蛋白的结构特性和双层溶剂组分在形成功能组装中的作用。这篇综述更新了我们对多重因素的理解,这些因素是转运体整合和寡聚的基础,重点是渗透水通道蛋白。这项工作还详细阐述了细菌和哺乳动物水通道蛋白四聚体的单个单体如何相互作用,以及四聚体在嵌入已知成分的脂质双层后如何与脂质形成接触,这模仿了细菌和哺乳动物的膜。虽然这篇小型综述描述了使用当前方法获得的发现,但对如何通过单分子和原位低温电子断层扫描技术扩展这一知识持开放态度。这些方法和其他方法可以揭示膜蛋白组装的熵源,以及与结合伙伴整合、折叠、寡聚化和四级结构形成的途径。我们可以期待,这些跨学科的方法将为创造优化的交通系统奠定基础,这可能会激发生物工程来发展一个可持续和健康的社会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
期刊最新文献
Electrosome assembly: Structural insights from high voltage-activated calcium channel (CaV)-chaperone interactions. Exploring the oncogenic roles of T-box transcription factor TBX2 and its potential as a therapeutic target. Same same but different? How blood and lymphatic vessels induce cell contact inhibition. The role of transcription bodies in gene expression: what embryos teach us. Small RNA-mediated suppression of sex chromosome meiotic conflicts during Drosophila male gametogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1