A cost-effective, high-throughput, highly accurate genotyping method for outbred populations.

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY G3: Genes|Genomes|Genetics Pub Date : 2025-02-05 DOI:10.1093/g3journal/jkae291
Denghui Chen, Apurva S Chitre, Khai-Minh H Nguyen, Katerina A Cohen, Beverly F Peng, Kendra S Ziegler, Faith Okamoto, Bonnie Lin, Benjamin B Johnson, Thiago M Sanches, Riyan Cheng, Oksana Polesskaya, Abraham A Palmer
{"title":"A cost-effective, high-throughput, highly accurate genotyping method for outbred populations.","authors":"Denghui Chen, Apurva S Chitre, Khai-Minh H Nguyen, Katerina A Cohen, Beverly F Peng, Kendra S Ziegler, Faith Okamoto, Bonnie Lin, Benjamin B Johnson, Thiago M Sanches, Riyan Cheng, Oksana Polesskaya, Abraham A Palmer","doi":"10.1093/g3journal/jkae291","DOIUrl":null,"url":null,"abstract":"<p><p>Affordable sequencing and genotyping methods are essential for large-scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, nonhuman model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping by sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping by sequencing and more recently generated by low-coverage whole-genome sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21× coverage) and low-coverage whole-genome sequencing data from 8,760 heterogeneous stock rats (mean 0.27× coverage), we can impute 7.32 million biallelic single-nucleotide polymorphisms with a concordance rate > 99.76% compared to high-coverage (mean 33.26× coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping by sequencing or low-coverage whole-genome sequencing for accurate genotyping and demonstrate techniques that may also be useful for other genetic studies in nonhuman subjects.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797033/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae291","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Affordable sequencing and genotyping methods are essential for large-scale genome-wide association studies. While genotyping microarrays and reference panels for imputation are available for human subjects, nonhuman model systems often lack such options. Our lab previously demonstrated an efficient and cost-effective method to genotype heterogeneous stock rats using double-digest genotyping by sequencing. However, low-coverage whole-genome sequencing offers an alternative method that has several advantages. Here, we describe a cost-effective, high-throughput, high-accuracy genotyping method for N/NIH heterogeneous stock rats that can use a combination of sequencing data previously generated by double-digest genotyping by sequencing and more recently generated by low-coverage whole-genome sequencing data. Using double-digest genotyping-by-sequencing data from 5,745 heterogeneous stock rats (mean 0.21× coverage) and low-coverage whole-genome sequencing data from 8,760 heterogeneous stock rats (mean 0.27× coverage), we can impute 7.32 million biallelic single-nucleotide polymorphisms with a concordance rate > 99.76% compared to high-coverage (mean 33.26× coverage) whole-genome sequencing data for a subset of the same individuals. Our results demonstrate the feasibility of using sequencing data from double-digest genotyping by sequencing or low-coverage whole-genome sequencing for accurate genotyping and demonstrate techniques that may also be useful for other genetic studies in nonhuman subjects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种经济高效、高通量、高精确度的外源种群基因分型方法。
负担得起的测序和基因分型方法对于大规模全基因组关联研究至关重要。虽然基因分型微阵列和用于输入的参考面板可用于人类受试者,但非人类模型系统通常缺乏此类选择。我们的实验室之前已经证明了一种高效和经济的方法,利用双消化基因分型测序对异种储备大鼠进行基因分型。然而,低覆盖全基因组测序提供了一种具有几个优点的替代方法。在这里,我们描述了一种具有成本效益,高通量,高精度的N/NIH异种种群大鼠基因分型方法,该方法可以使用以前由双消化基因分型测序产生的测序数据和最近由低覆盖全基因组测序数据产生的测序数据的组合。利用5745只异种种群大鼠(平均覆盖率为0.21倍)的双消化基因分型测序数据和8760只异种种群大鼠(平均覆盖率为0.27倍)的低覆盖率全基因组测序数据,我们可以推算出732万个双等位基因单核苷酸多态性,与高覆盖率(平均覆盖率为33.26倍)的全基因组测序数据相比,一致性率为bb0 99.76%。我们的研究结果证明了使用双消化基因分型测序或低覆盖全基因组测序的测序数据进行精确基因分型的可行性,并证明了这些技术也可能对非人类受试者的其他遗传研究有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
期刊最新文献
Life-stage dependent behavior mimics chemosensory repertoire diversity in a belowground, specialist herbivore. Draft genome of the endemic alpine ground beetle Carabus (Platycarabus) depressus (Coleoptera: Carabidae) from long-read sequencing of a frozen archived specimen. Dynamic Changes in Gene Expression Through Aging in Drosophila melanogaster Heads. A deficiency screen of the X chromosome for Rap1 GTPase dominant interacting genes in Drosophila border cell migration. Nested likelihood-ratio testing of the nonsynonymous:synonymous ratio suggests greater adaptation in the piRNA machinery of Drosophila melanogaster compared with Drosophila ananassae and Drosophila willistoni, two species with higher repeat content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1