Shengnan Sun, Shurong Yang, Ying Cheng, Ting Fang, Jingru Qu, Lei Tian, Man Zhang, Shi Wu, Bei Sun, Liming Chen
{"title":"Jinlida granules alleviate podocyte apoptosis and mitochondrial dysfunction via the AMPK/PGC‑1α pathway in diabetic nephropathy.","authors":"Shengnan Sun, Shurong Yang, Ying Cheng, Ting Fang, Jingru Qu, Lei Tian, Man Zhang, Shi Wu, Bei Sun, Liming Chen","doi":"10.3892/ijmm.2024.5467","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional Chinese Medicine (TCM) has demonstrated promising efficacy in managing and preventing the early‑stage diabetic nephropathy (DN). Although the exact mechanisms remain elusive, clinical evidence has suggested that Jinlida granules (JLD) are beneficial in improving renal function among patients with DN. The present study aimed to elucidate the effect of JLD on DN and the underlying molecular mechanism. Therefore, podocyte apoptosis was evaluated using flow cytometry and TUNEL staining, while mitochondrial morphology and function were assessed using transmission electron microscopy, MitoTracker, JC‑1 and reactive oxygen species staining. RNA sequencing analysis was performed to elucidate the mechanism underlying the effect of JLD on DN. Additionally, to investigate the role of peroxisome proliferator‑activated receptor‑γ co‑activator‑1α (PGC‑1α) in mitigating JLD‑induced mitochondrial dysfunction and podocyte apoptosis, MPC5 cells were transfected with the corresponding small interfering RNA constructs. The results showed that JLD effectively improved renal function and mitigated podocyte injury, as well as ameliorated mitochondrial dysfunction and inhibited apoptosis in db/db mice. <i>In vitro</i> experiments further revealed that JLD exerted a protective effect via inhibiting mitochondrial fission and apoptosis in high glucose‑treated podocytes. Furthermore, JLD enhanced the phosphorylation of adenosine monophosphate‑activated protein kinase (AMPK), thus promoting the expression of PGC‑1α, eventually improving apoptosis and mitochondrial homeostasis. Overall, the current study revealed that JLD could improve mitochondrial homeostasis and reduce cell apoptosis in podocytes via activating the AMPK/PGC‑1α pathway, thus providing a theoretical foundation for the clinical management of DN.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5467","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional Chinese Medicine (TCM) has demonstrated promising efficacy in managing and preventing the early‑stage diabetic nephropathy (DN). Although the exact mechanisms remain elusive, clinical evidence has suggested that Jinlida granules (JLD) are beneficial in improving renal function among patients with DN. The present study aimed to elucidate the effect of JLD on DN and the underlying molecular mechanism. Therefore, podocyte apoptosis was evaluated using flow cytometry and TUNEL staining, while mitochondrial morphology and function were assessed using transmission electron microscopy, MitoTracker, JC‑1 and reactive oxygen species staining. RNA sequencing analysis was performed to elucidate the mechanism underlying the effect of JLD on DN. Additionally, to investigate the role of peroxisome proliferator‑activated receptor‑γ co‑activator‑1α (PGC‑1α) in mitigating JLD‑induced mitochondrial dysfunction and podocyte apoptosis, MPC5 cells were transfected with the corresponding small interfering RNA constructs. The results showed that JLD effectively improved renal function and mitigated podocyte injury, as well as ameliorated mitochondrial dysfunction and inhibited apoptosis in db/db mice. In vitro experiments further revealed that JLD exerted a protective effect via inhibiting mitochondrial fission and apoptosis in high glucose‑treated podocytes. Furthermore, JLD enhanced the phosphorylation of adenosine monophosphate‑activated protein kinase (AMPK), thus promoting the expression of PGC‑1α, eventually improving apoptosis and mitochondrial homeostasis. Overall, the current study revealed that JLD could improve mitochondrial homeostasis and reduce cell apoptosis in podocytes via activating the AMPK/PGC‑1α pathway, thus providing a theoretical foundation for the clinical management of DN.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.