Kristine M. Conde , HueyZhong Wong , Shuzheng Fang , Yongxiang Li , Meng Yu , Yue Deng , Qingzhuo Liu , Xing Fang , Mengjie Wang , Yuhan Shi , Olivia Z. Ginnard , Yuxue Yang , Longlong Tu , Hesong Liu , Hailan Liu , Na Yin , Jonathan C. Bean , Junying Han , Megan E. Burt , Sanika V. Jossy , Yong Xu
{"title":"Serotonin neurons integrate GABA and dopamine inputs to regulate meal initiation","authors":"Kristine M. Conde , HueyZhong Wong , Shuzheng Fang , Yongxiang Li , Meng Yu , Yue Deng , Qingzhuo Liu , Xing Fang , Mengjie Wang , Yuhan Shi , Olivia Z. Ginnard , Yuxue Yang , Longlong Tu , Hesong Liu , Hailan Liu , Na Yin , Jonathan C. Bean , Junying Han , Megan E. Burt , Sanika V. Jossy , Yong Xu","doi":"10.1016/j.metabol.2024.156099","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity is a growing global health epidemic with limited orally administered therapeutics. Serotonin (5-HT) is one neurotransmitter which remains an excellent target for new weight-loss therapies, but a gap remains in understanding the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using an optogenetic feeding paradigm, we showed that the 5-HT<sup>DRN</sup>➔arcuate nucleus (ARH) circuit plays a role in meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HT<sup>DRN</sup> neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response can be enhanced by hunger. Additionally, deletion of the GABA<sub>A</sub> receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the role of dopaminergic inputs via dopamine receptor D2 in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HT<sup>DRN</sup> neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, for the initiation of a meal.</div></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"163 ","pages":"Article 156099"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049524003275","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a growing global health epidemic with limited orally administered therapeutics. Serotonin (5-HT) is one neurotransmitter which remains an excellent target for new weight-loss therapies, but a gap remains in understanding the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using an optogenetic feeding paradigm, we showed that the 5-HTDRN➔arcuate nucleus (ARH) circuit plays a role in meal initiation. Incorporating electrophysiology and ChannelRhodopsin-2-Assisted Circuit Mapping, we demonstrated that 5-HTDRN neurons receive inhibitory input partially from GABAergic neurons in the DRN, and the 5-HT response can be enhanced by hunger. Additionally, deletion of the GABAA receptor subunit in 5-HT neurons inhibits meal initiation with no effect on the satiation process. Finally, we identified the role of dopaminergic inputs via dopamine receptor D2 in enhancing the response to GABA-induced feeding. Thus, our results indicate that 5-HTDRN neurons are inhibited by synergistic inhibitory actions of GABA and dopamine, for the initiation of a meal.
期刊介绍:
Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism.
Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential.
The journal addresses a range of topics, including:
- Energy Expenditure and Obesity
- Metabolic Syndrome, Prediabetes, and Diabetes
- Nutrition, Exercise, and the Environment
- Genetics and Genomics, Proteomics, and Metabolomics
- Carbohydrate, Lipid, and Protein Metabolism
- Endocrinology and Hypertension
- Mineral and Bone Metabolism
- Cardiovascular Diseases and Malignancies
- Inflammation in metabolism and immunometabolism