Plant growth Enhancement in Colchicine-Treated Tomato Seeds without Polyploidy Induction.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2024-12-12 DOI:10.1007/s11103-024-01521-1
Rosa Irma Obando-González, Luis Enrique Martínez-Hernández, Leandro Alberto Núñez-Muñoz, Berenice Calderón-Pérez, Roberto Ruiz-Medrano, José Abrahán Ramírez-Pool, Beatriz Xoconostle-Cázares
{"title":"Plant growth Enhancement in Colchicine-Treated Tomato Seeds without Polyploidy Induction.","authors":"Rosa Irma Obando-González, Luis Enrique Martínez-Hernández, Leandro Alberto Núñez-Muñoz, Berenice Calderón-Pérez, Roberto Ruiz-Medrano, José Abrahán Ramírez-Pool, Beatriz Xoconostle-Cázares","doi":"10.1007/s11103-024-01521-1","DOIUrl":null,"url":null,"abstract":"<p><p>Plant breeding plays a pivotal role in the development of improved tomato cultivars, addressing various challenges faced by this crop worldwide. Tomato crop yield is affected by biotic and abiotic stress, including diverse pathogens and pests, extreme temperatures, drought, and soil salinity, thus affecting fruit quality, and overall crop productivity. Through strategic plant breeding approaches, it is possible to increase the genetic diversity of tomato cultivars, leading to the development of varieties with increased resistance to prevalent diseases and pests, improved tolerance to environmental stress, and enhanced adaptability to changing agroclimatic conditions. The induction of genetic variability using antimitotic agents, such as colchicine, has been widely employed in plant breeding precisely to this end. In this study, we analyzed the transcriptome of colchicine-treated tomato plants exhibiting larger size, characterized by larger leaves, while seedlings of the T2 generation harbored three cotyledons. A total of 382 differentially expressed genes encoding proteins associated with anatomical structure development, hormone synthesis and transport, flavonoid biosynthesis, and responses to various stimuli, stresses, and defense mechanisms were identified. Gene enrichment analysis suggests a role for auxin and flavonoid biosynthesis in cotyledon formation. Furthermore, single-nucleotide polymorphisms were mapped in colchicine-treated plants and determined which corresponded to differentially- expressed genes. Interestingly, most were associated to only a few genes in a similar location. This study provides significant insights into the genes and metabolic pathways affected in colchicine-treated tomatoes that exhibit improved agronomic traits, such as plant vigor and improved photosynthesis rate.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 1","pages":"3"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01521-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant breeding plays a pivotal role in the development of improved tomato cultivars, addressing various challenges faced by this crop worldwide. Tomato crop yield is affected by biotic and abiotic stress, including diverse pathogens and pests, extreme temperatures, drought, and soil salinity, thus affecting fruit quality, and overall crop productivity. Through strategic plant breeding approaches, it is possible to increase the genetic diversity of tomato cultivars, leading to the development of varieties with increased resistance to prevalent diseases and pests, improved tolerance to environmental stress, and enhanced adaptability to changing agroclimatic conditions. The induction of genetic variability using antimitotic agents, such as colchicine, has been widely employed in plant breeding precisely to this end. In this study, we analyzed the transcriptome of colchicine-treated tomato plants exhibiting larger size, characterized by larger leaves, while seedlings of the T2 generation harbored three cotyledons. A total of 382 differentially expressed genes encoding proteins associated with anatomical structure development, hormone synthesis and transport, flavonoid biosynthesis, and responses to various stimuli, stresses, and defense mechanisms were identified. Gene enrichment analysis suggests a role for auxin and flavonoid biosynthesis in cotyledon formation. Furthermore, single-nucleotide polymorphisms were mapped in colchicine-treated plants and determined which corresponded to differentially- expressed genes. Interestingly, most were associated to only a few genes in a similar location. This study provides significant insights into the genes and metabolic pathways affected in colchicine-treated tomatoes that exhibit improved agronomic traits, such as plant vigor and improved photosynthesis rate.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
秋水仙素处理过的番茄种子在不诱导多倍体的情况下提高了植株生长。
植物育种在番茄改良品种的开发中起着关键作用,解决了这种作物在世界范围内面临的各种挑战。番茄作物产量受到生物和非生物胁迫的影响,包括各种病原体和害虫、极端温度、干旱和土壤盐度,从而影响果实质量和作物的整体生产力。通过战略性植物育种方法,可以增加番茄品种的遗传多样性,从而开发出对流行病虫害的抗性增强、对环境胁迫的耐受性增强、对不断变化的农业气候条件的适应性增强的品种。利用抗有丝分裂剂(如秋水仙碱)诱导遗传变异已被广泛应用于植物育种中,正是为了达到这一目的。在这项研究中,我们分析了秋水仙碱处理的番茄植株的转录组,这些植株的体积更大,叶片更大,而T2代的幼苗则有三个子叶。共鉴定出382个差异表达基因,编码与解剖结构发育、激素合成和运输、类黄酮生物合成以及对各种刺激、应激和防御机制的反应相关的蛋白质。基因富集分析表明生长素和类黄酮的生物合成在子叶形成中起作用。此外,我们还绘制了秋水仙碱处理植物的单核苷酸多态性图谱,并确定了哪些与差异表达基因相对应。有趣的是,大多数人只与相似位置的少数基因相关。这项研究为秋水仙碱处理番茄的基因和代谢途径提供了重要的见解,这些番茄表现出改善的农艺性状,如植物活力和提高的光合速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
Dwarfs standing tall: breeding towards the 'Yellow revolution' through insights into plant height regulation. Identification and expression pattern analysis of BpGRAS gene family in Bergenia purpurascens and functional characterization of BpGRAS9 in salt tolerance. Folate depletion impact on the cell cycle results in restricted primary root growth in Arabidopsis. WRKY transcription factor MdWRKY71 regulates flowering time in apple. The role of the sucrose synthase gene in promoting thorn occurrence and vegetative growth in Lycium ruthenicum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1