Exploring the therapeutic potential of modulating nonsense-mediated mRNA decay.

IF 4.2 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RNA Pub Date : 2024-12-12 DOI:10.1261/rna.080334.124
Mary McMahon, Lynne E Maquat
{"title":"Exploring the therapeutic potential of modulating nonsense-mediated mRNA decay.","authors":"Mary McMahon, Lynne E Maquat","doi":"10.1261/rna.080334.124","DOIUrl":null,"url":null,"abstract":"<p><p>Discovered more than four decades ago, nonsense-mediated mRNA decay (NMD) plays a fundamental role in the regulation of gene expression and is a major contributor to numerous diseases. With advanced technologies, several novel approaches aim to directly circumvent the effects of disease-causing frameshift and nonsense mutations. Additional therapeutics aim to globally dampen the NMD pathway in diseases associated with pathway hyperactivation, one example being Fragile X Syndrome. In other cases, therapeutics have been designed to hijack or inhibit the cellular NMD machinery to either activate or obviate transcript-specific NMD by modulating pre-mRNA splicing. Here, we discuss promising approaches employed to regulate NMD for therapeutic purposes and highlight potential challenges in future clinical development. We are optimistic that the future of developing target-specific and global modulators of NMD (inhibitors as well as activators) is bright and will revolutionize the treatment of many genetic disorders, especially those with high unmet medical need.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080334.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Discovered more than four decades ago, nonsense-mediated mRNA decay (NMD) plays a fundamental role in the regulation of gene expression and is a major contributor to numerous diseases. With advanced technologies, several novel approaches aim to directly circumvent the effects of disease-causing frameshift and nonsense mutations. Additional therapeutics aim to globally dampen the NMD pathway in diseases associated with pathway hyperactivation, one example being Fragile X Syndrome. In other cases, therapeutics have been designed to hijack or inhibit the cellular NMD machinery to either activate or obviate transcript-specific NMD by modulating pre-mRNA splicing. Here, we discuss promising approaches employed to regulate NMD for therapeutic purposes and highlight potential challenges in future clinical development. We are optimistic that the future of developing target-specific and global modulators of NMD (inhibitors as well as activators) is bright and will revolutionize the treatment of many genetic disorders, especially those with high unmet medical need.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索调节无义介导的mRNA衰变的治疗潜力。
四十多年前,无义介导的mRNA衰变(NMD)被发现,在基因表达调控中起着重要作用,是许多疾病的主要原因。随着先进的技术,一些新的方法旨在直接规避致病移码和无义突变的影响。其他治疗方法的目标是在与通路过度激活相关的疾病中抑制NMD通路,例如脆性X综合征。在其他情况下,治疗被设计为劫持或抑制细胞NMD机制,通过调节mrna前剪接来激活或消除转录特异性NMD。在这里,我们讨论了用于治疗目的调节NMD的有前途的方法,并强调了未来临床发展中的潜在挑战。我们乐观地认为,开发靶向特异性和全局NMD调节剂(抑制剂和激活剂)的前景是光明的,并将彻底改变许多遗传疾病的治疗,特别是那些医疗需求未得到满足的遗传病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RNA
RNA 生物-生化与分子生物学
CiteScore
8.30
自引率
2.20%
发文量
101
审稿时长
2.6 months
期刊介绍: RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.
期刊最新文献
A general RNA-templated RNA extension activity of E. coli RNA polymerase. The PAZ domain of Aedes aegypti Dicer 2 is critical for accurate and high-fidelity size determination of virus-derived small interfering RNAs. Retrospective Article: Joseph G. Gall (1928-2024). DIS3L, cytoplasmic exosome catalytic subunit, is essential for development but not cell viability in mice. New reporters for monitoring cellular NMD.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1