Canonical terpene synthases in arthropods: Intraphylum gene transfer.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-12-17 Epub Date: 2024-12-13 DOI:10.1073/pnas.2413007121
Xinlu Chen, John M Urban, Jens Wurlitzer, Xiuting Wei, Jin Han, Sarah E O'Connor, Jeffrey D Rudolf, Tobias G Köllner, Feng Chen
{"title":"Canonical terpene synthases in arthropods: Intraphylum gene transfer.","authors":"Xinlu Chen, John M Urban, Jens Wurlitzer, Xiuting Wei, Jin Han, Sarah E O'Connor, Jeffrey D Rudolf, Tobias G Köllner, Feng Chen","doi":"10.1073/pnas.2413007121","DOIUrl":null,"url":null,"abstract":"<p><p>Insects employ terpenoids for communication both within and between species. While terpene synthases derived from isoprenyl diphosphate synthase have been shown to catalyze terpenoid biosynthesis in some insects, canonical terpene synthases (TPS) commonly found in plants, fungi, and bacteria were previously unidentified in insects. This study reveals the presence of <i>TPS</i> genes in insects, likely originating via horizontal gene transfer from noninsect arthropods. By examining 361 insect genomes, we identified <i>TPS</i> genes in five species of the Sciaridae family (fungus gnats). Additionally, <i>TPS</i> genes were found in Collembola (springtails) and Acariformes (mites) among diverse noninsect arthropods. Selected TPS enzymes from Sciaridae, Collembola, and Acariformes display monoterpene, sesquiterpene, and/or diterpene synthase activities. Through comprehensive protein database search and phylogenetic analysis, the <i>TPS</i> genes in Sciaridae were found to be most closely related to those in Acariformes, suggesting transfer of <i>TPS</i> genes from Acariformes to Sciaridae. In the model Sciaridae <i>Bradysia coprophila</i>, all five <i>TPS</i> genes are most highly expressed in adult males, suggesting a sex- and developmental stage-specific role of their terpenoid products. The finding of <i>TPS</i> genes in insects and their possible evolutionary origin through intraphylum gene transfer within arthropods sheds light on metabolic innovation in insects.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 51","pages":"e2413007121"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2413007121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Insects employ terpenoids for communication both within and between species. While terpene synthases derived from isoprenyl diphosphate synthase have been shown to catalyze terpenoid biosynthesis in some insects, canonical terpene synthases (TPS) commonly found in plants, fungi, and bacteria were previously unidentified in insects. This study reveals the presence of TPS genes in insects, likely originating via horizontal gene transfer from noninsect arthropods. By examining 361 insect genomes, we identified TPS genes in five species of the Sciaridae family (fungus gnats). Additionally, TPS genes were found in Collembola (springtails) and Acariformes (mites) among diverse noninsect arthropods. Selected TPS enzymes from Sciaridae, Collembola, and Acariformes display monoterpene, sesquiterpene, and/or diterpene synthase activities. Through comprehensive protein database search and phylogenetic analysis, the TPS genes in Sciaridae were found to be most closely related to those in Acariformes, suggesting transfer of TPS genes from Acariformes to Sciaridae. In the model Sciaridae Bradysia coprophila, all five TPS genes are most highly expressed in adult males, suggesting a sex- and developmental stage-specific role of their terpenoid products. The finding of TPS genes in insects and their possible evolutionary origin through intraphylum gene transfer within arthropods sheds light on metabolic innovation in insects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Order of amino acid recruitment into the genetic code resolved by last universal common ancestor's protein domains. A two-step dance commits collagen to folding. Climbing the scala energiae: The cost of growing animals great and small. Correction for McCullagh et al., NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Correction for Mendoza Nava et al., Buckling-induced sound production in the aeroelastic tymbals of Yponomeuta.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1