A Dynamic Model for Early Prediction of Alzheimer's Disease by Leveraging Graph Convolutional Networks and Tensor Algebra.

Cagri Ozdemir, Mohammad Al Olaimat, Serdar Bozdag
{"title":"A Dynamic Model for Early Prediction of Alzheimer's Disease by Leveraging Graph Convolutional Networks and Tensor Algebra.","authors":"Cagri Ozdemir, Mohammad Al Olaimat, Serdar Bozdag","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurocognitive disorder that deteriorates memory and impairs cognitive functions. Mild Cognitive Impairment (MCI) is generally considered as an intermediate phase between normal cognitive aging and more severe conditions such as AD. Although not all individuals with MCI will develop AD, they are at an increased risk of developing AD. Diagnosing AD once strong symptoms are already present is of limited value, as AD leads to irreversible cognitive decline and brain damage. Thus, it is crucial to develop methods for the early prediction of AD in individuals with MCI. Recurrent Neural Networks (RNN)-based methods have been effectively used to predict the progression from MCI to AD by analyzing electronic health records (EHR). However, despite their widespread use, existing RNN-based tools may introduce increased model complexity and often face difficulties in capturing long-term dependencies. In this study, we introduced a novel Dynamic deep learning model for Early Prediction of AD (DyEPAD) to predict MCI subjects' progression to AD utilizing EHR data. In the first phase of DyEPAD, embeddings for each time step or visit are captured through Graph Convolutional Networks (GCN) and aggregation functions. In the final phase, DyEPAD employs tensor algebraic operations for frequency domain analysis of these embeddings, capturing the full scope of evolutionary patterns across all time steps. Our experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC) datasets demonstrate that our proposed model outperforms or is in par with the state-of-the-art and baseline methods.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"675-689"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a neurocognitive disorder that deteriorates memory and impairs cognitive functions. Mild Cognitive Impairment (MCI) is generally considered as an intermediate phase between normal cognitive aging and more severe conditions such as AD. Although not all individuals with MCI will develop AD, they are at an increased risk of developing AD. Diagnosing AD once strong symptoms are already present is of limited value, as AD leads to irreversible cognitive decline and brain damage. Thus, it is crucial to develop methods for the early prediction of AD in individuals with MCI. Recurrent Neural Networks (RNN)-based methods have been effectively used to predict the progression from MCI to AD by analyzing electronic health records (EHR). However, despite their widespread use, existing RNN-based tools may introduce increased model complexity and often face difficulties in capturing long-term dependencies. In this study, we introduced a novel Dynamic deep learning model for Early Prediction of AD (DyEPAD) to predict MCI subjects' progression to AD utilizing EHR data. In the first phase of DyEPAD, embeddings for each time step or visit are captured through Graph Convolutional Networks (GCN) and aggregation functions. In the final phase, DyEPAD employs tensor algebraic operations for frequency domain analysis of these embeddings, capturing the full scope of evolutionary patterns across all time steps. Our experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC) datasets demonstrate that our proposed model outperforms or is in par with the state-of-the-art and baseline methods.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图卷积网络和张量代数的阿尔茨海默病早期预测动态模型。
阿尔茨海默病(AD)是一种神经认知障碍,会使记忆恶化,损害认知功能。轻度认知损伤(Mild Cognitive Impairment, MCI)通常被认为是介于正常认知老化和AD等更严重疾病之间的中间阶段。虽然并非所有轻度认知障碍患者都会发展为AD,但他们患AD的风险增加了。一旦出现强烈症状,诊断阿尔茨海默病的价值就有限了,因为阿尔茨海默病会导致不可逆转的认知能力下降和脑损伤。因此,开发早期预测MCI患者AD的方法至关重要。基于递归神经网络(RNN)的方法已被有效地用于通过分析电子健康记录(EHR)来预测从MCI到AD的进展。然而,尽管它们被广泛使用,现有的基于rnn的工具可能会引入增加的模型复杂性,并且在捕获长期依赖关系方面经常面临困难。在这项研究中,我们引入了一种新的AD早期预测动态深度学习模型(DyEPAD),利用电子病历数据预测MCI受试者向AD的进展。在染料pad的第一阶段,通过图卷积网络(GCN)和聚合函数捕获每个时间步或访问的嵌入。在最后阶段,染料pad采用张量代数运算对这些嵌入进行频域分析,捕捉所有时间步长的进化模式的全部范围。我们在阿尔茨海默病神经影像学倡议(ADNI)和国家阿尔茨海默病协调中心(NACC)数据集上的实验表明,我们提出的模型优于或与最先进的基线方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface. Session Introduction: Overcoming health disparities in precision medicine: Intersectional approaches in precision medicine. Session Introduction: Precision Medicine: Multi-modal and multi-scale methods to promote mechanistic understanding of disease. Social risk factors and cardiovascular risk in obstructive sleep apnea: a systematic assessment of clinical predictors in community health centers. A Visual Analytics Framework for Assessing Interactive AI for Clinical Decision Support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1