Integrated exposomic analysis of lipid phenotypes: Leveraging GE.db in environment by environment interaction studies.

Andre Luis Garao Rico, Nicole Palmiero, Marylyn D Ritchie, Molly A Hall
{"title":"Integrated exposomic analysis of lipid phenotypes: Leveraging GE.db in environment by environment interaction studies.","authors":"Andre Luis Garao Rico, Nicole Palmiero, Marylyn D Ritchie, Molly A Hall","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Gene-environment interaction (GxE) studies provide insights into the interplay between genetics and the environment but often overlook multiple environmental factors' synergistic effects. This study encompasses the use of environment by environment interaction (ExE) studies to explore interactions among environmental factors affecting lipid phenotypes (e.g., HDL, LDL, and total cholesterol, and triglycerides), which are crucial for disease risk assessment. We developed a novel curated knowledge base, GE.db, integrating genomic and exposomic interactions. In this study, we filtered NHANES exposure variables (available 1999-2018) to identify significant ExE using GE.db. From 101,316 participants and 77 exposures, we identified 263 statistically significant interactions (FDR p < 0.1) in discovery and replication datasets, with 21 interactions significant for HDL-C (Bonferroni p < 0.05). Notable interactions included docosapentaenoic acid (22:5n-3) (DPA) - arachidic acid (20:0), stearic acid (18:0) - arachidic acid (20:0), and blood 2,5-dimethyfuran - blood benzene associated with HDL-C levels. These findings underscore GE.db's role in enhancing -omics research efficiency and highlight the complex impact of environmental exposures on lipid metabolism, informing future health strategies.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"535-550"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11694901/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Gene-environment interaction (GxE) studies provide insights into the interplay between genetics and the environment but often overlook multiple environmental factors' synergistic effects. This study encompasses the use of environment by environment interaction (ExE) studies to explore interactions among environmental factors affecting lipid phenotypes (e.g., HDL, LDL, and total cholesterol, and triglycerides), which are crucial for disease risk assessment. We developed a novel curated knowledge base, GE.db, integrating genomic and exposomic interactions. In this study, we filtered NHANES exposure variables (available 1999-2018) to identify significant ExE using GE.db. From 101,316 participants and 77 exposures, we identified 263 statistically significant interactions (FDR p < 0.1) in discovery and replication datasets, with 21 interactions significant for HDL-C (Bonferroni p < 0.05). Notable interactions included docosapentaenoic acid (22:5n-3) (DPA) - arachidic acid (20:0), stearic acid (18:0) - arachidic acid (20:0), and blood 2,5-dimethyfuran - blood benzene associated with HDL-C levels. These findings underscore GE.db's role in enhancing -omics research efficiency and highlight the complex impact of environmental exposures on lipid metabolism, informing future health strategies.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质表型的综合暴露组学分析:在环境相互作用研究中利用 GE.db。
基因-环境相互作用(GxE)研究提供了遗传与环境相互作用的见解,但往往忽视了多种环境因素的协同效应。本研究包括利用环境相互作用(ExE)研究来探索影响脂质表型的环境因素之间的相互作用(例如,HDL、LDL、总胆固醇和甘油三酯),这对疾病风险评估至关重要。我们开发了一个新的知识库,GE.db,整合了基因组和暴露体的相互作用。在本研究中,我们筛选了NHANES暴露变量(1999-2018年可用),以使用GE.db识别显著的ExE。从101316名参与者和77次暴露中,我们在发现和复制数据集中确定了263个具有统计学意义的相互作用(FDR p < 0.1),其中21个相互作用对HDL-C具有统计学意义(Bonferroni p < 0.05)。显著的相互作用包括二十二碳五烯酸(22:5n-3) (DPA) -花生酸(20:0)、硬脂酸(18:0)-花生酸(20:0)和与HDL-C水平相关的血液2,5-二甲呋喃-血苯。这些发现强调了GE.db在提高组学研究效率方面的作用,并强调了环境暴露对脂质代谢的复杂影响,为未来的健康策略提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
期刊最新文献
Session Introduction: AI and Machine Learning in Clinical Medicine: Generative and Interactive Systems at the Human-Machine Interface. Session Introduction: Overcoming health disparities in precision medicine: Intersectional approaches in precision medicine. Session Introduction: Precision Medicine: Multi-modal and multi-scale methods to promote mechanistic understanding of disease. Social risk factors and cardiovascular risk in obstructive sleep apnea: a systematic assessment of clinical predictors in community health centers. A Visual Analytics Framework for Assessing Interactive AI for Clinical Decision Support.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1