Karl Keat, Rasika Venkatesh, Yidi Huang, Rachit Kumar, Sony Tuteja, Katrin Sangkuhl, Binglan Li, Li Gong, Michelle Whirl-Carrillo, Teri E Klein, Marylyn D Ritchie, Dokyoon Kim
{"title":"PGxQA: A Resource for Evaluating LLM Performance for Pharmacogenomic QA Tasks.","authors":"Karl Keat, Rasika Venkatesh, Yidi Huang, Rachit Kumar, Sony Tuteja, Katrin Sangkuhl, Binglan Li, Li Gong, Michelle Whirl-Carrillo, Teri E Klein, Marylyn D Ritchie, Dokyoon Kim","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacogenetics represents one of the most promising areas of precision medicine, with several guidelines for genetics-guided treatment ready for clinical use. Despite this, implementation has been slow, with few health systems incorporating the technology into their standard of care. One major barrier to uptake is the lack of education and awareness of pharmacogenetics among clinicians and patients. The introduction of large language models (LLMs) like GPT-4 has raised the possibility of medical chatbots that deliver timely information to clinicians, patients, and researchers with a simple interface. Although state-of-the-art LLMs have shown impressive performance at advanced tasks like medical licensing exams, in practice they still often provide false information, which is particularly hazardous in a clinical context. To quantify the extent of this issue, we developed a series of automated and expert-scored tests to evaluate the performance of chatbots in answering pharmacogenetics questions from the perspective of clinicians, patients, and researchers. We applied this benchmark to state-of-the-art LLMs and found that newer models like GPT-4o greatly outperform their predecessors, but still fall short of the standards required for clinical use. Our benchmark will be a valuable public resource for subsequent developments in this space as we work towards better clinical AI for pharmacogenetics.</p>","PeriodicalId":34954,"journal":{"name":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","volume":"30 ","pages":"229-246"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734741/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmacogenetics represents one of the most promising areas of precision medicine, with several guidelines for genetics-guided treatment ready for clinical use. Despite this, implementation has been slow, with few health systems incorporating the technology into their standard of care. One major barrier to uptake is the lack of education and awareness of pharmacogenetics among clinicians and patients. The introduction of large language models (LLMs) like GPT-4 has raised the possibility of medical chatbots that deliver timely information to clinicians, patients, and researchers with a simple interface. Although state-of-the-art LLMs have shown impressive performance at advanced tasks like medical licensing exams, in practice they still often provide false information, which is particularly hazardous in a clinical context. To quantify the extent of this issue, we developed a series of automated and expert-scored tests to evaluate the performance of chatbots in answering pharmacogenetics questions from the perspective of clinicians, patients, and researchers. We applied this benchmark to state-of-the-art LLMs and found that newer models like GPT-4o greatly outperform their predecessors, but still fall short of the standards required for clinical use. Our benchmark will be a valuable public resource for subsequent developments in this space as we work towards better clinical AI for pharmacogenetics.