Atharva S. Burte, Advaith Nair, Lars C. Grabow, Paul J. Dauenhauer, Susannah L. Scott, Omar A. Abdelrahman
{"title":"CatTestHub: A benchmarking database of experimental heterogeneous catalysis for evaluating advanced materials","authors":"Atharva S. Burte, Advaith Nair, Lars C. Grabow, Paul J. Dauenhauer, Susannah L. Scott, Omar A. Abdelrahman","doi":"10.1016/j.jcat.2024.115902","DOIUrl":null,"url":null,"abstract":"The ability to quantitatively compare newly evolving catalytic materials and technologies is hindered by the widespread availability of catalytic data collected in a consistent manner. While certain catalytic chemistries have been widely studied across decades of scientific research, quantitative comparisons based on literature information is hindered by variability in reaction conditions, types of reported data, and reporting procedures. Here, we present CatTestHub, an open-access database dedicated to benchmarking experimental heterogeneous catalysis data. Combining systematically reported catalytic activity data for selected probe chemistries, with relevant material characterization information, and reactor configuration, the database provides a collection of catalytic benchmarks for distinct classes of active site functionality. Through key choices in data access, availability, and traceability, CatTestHub seeks to balance the fundamental information needs of chemical catalysis and the FAIR data design principles. Details of the database architecture and the means through which to navigate it are presented, highlighting examples of catalytic insights readily drawn from the available benchmarking data. In its current iteration, CatTestHub spans over 250 unique experimental data points, collected over 24 solid catalysts, that facilitated the turnover of 3 distinct catalytic chemistries. A roadmap is presented through which to expand the open-access platform that serves as a community wide benchmark, primarily through continuous addition of kinetic information on select catalytic systems by members of the heterogeneous catalysis community at large.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"29 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2024.115902","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to quantitatively compare newly evolving catalytic materials and technologies is hindered by the widespread availability of catalytic data collected in a consistent manner. While certain catalytic chemistries have been widely studied across decades of scientific research, quantitative comparisons based on literature information is hindered by variability in reaction conditions, types of reported data, and reporting procedures. Here, we present CatTestHub, an open-access database dedicated to benchmarking experimental heterogeneous catalysis data. Combining systematically reported catalytic activity data for selected probe chemistries, with relevant material characterization information, and reactor configuration, the database provides a collection of catalytic benchmarks for distinct classes of active site functionality. Through key choices in data access, availability, and traceability, CatTestHub seeks to balance the fundamental information needs of chemical catalysis and the FAIR data design principles. Details of the database architecture and the means through which to navigate it are presented, highlighting examples of catalytic insights readily drawn from the available benchmarking data. In its current iteration, CatTestHub spans over 250 unique experimental data points, collected over 24 solid catalysts, that facilitated the turnover of 3 distinct catalytic chemistries. A roadmap is presented through which to expand the open-access platform that serves as a community wide benchmark, primarily through continuous addition of kinetic information on select catalytic systems by members of the heterogeneous catalysis community at large.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.