Large-Scale Independent Vector Analysis (IVA-G) via Coresets

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-12-13 DOI:10.1109/TSP.2024.3517323
Ben Gabrielson;Hanlu Yang;Trung Vu;Vince Calhoun;Tülay Adali
{"title":"Large-Scale Independent Vector Analysis (IVA-G) via Coresets","authors":"Ben Gabrielson;Hanlu Yang;Trung Vu;Vince Calhoun;Tülay Adali","doi":"10.1109/TSP.2024.3517323","DOIUrl":null,"url":null,"abstract":"Joint blind source separation (JBSS) involves the factorization of multiple matrices, i.e. “datasets”, into “sources” that are statistically dependent across datasets and independent within datasets. Despite this usefulness for analyzing multiple datasets, JBSS methods suffer from considerable computational costs and are typically intractable for hundreds or thousands of datasets. To address this issue, we present a methodology for how a subset of the datasets can be used to perform efficient JBSS over the full set. We motivate two such methods: a numerical extension of independent vector analysis (IVA) with the multivariate Gaussian model (IVA-G), and a recently proposed analytic method resembling generalized joint diagonalization (GJD). We derive nonidentifiability conditions for both methods, and then demonstrate how one can significantly improve these methods’ generalizability by an efficient representative subset selection method. This involves selecting a \n<italic>coreset</i>\n (a weighted subset) that minimizes a measure of discrepancy between the statistics of the coreset and the full set. Using simulated and real functional magnetic resonance imaging (fMRI) data, we demonstrate significant scalability and source separation advantages of our “coreIVA-G” method vs. other JBSS methods.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"230-244"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10798966/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Joint blind source separation (JBSS) involves the factorization of multiple matrices, i.e. “datasets”, into “sources” that are statistically dependent across datasets and independent within datasets. Despite this usefulness for analyzing multiple datasets, JBSS methods suffer from considerable computational costs and are typically intractable for hundreds or thousands of datasets. To address this issue, we present a methodology for how a subset of the datasets can be used to perform efficient JBSS over the full set. We motivate two such methods: a numerical extension of independent vector analysis (IVA) with the multivariate Gaussian model (IVA-G), and a recently proposed analytic method resembling generalized joint diagonalization (GJD). We derive nonidentifiability conditions for both methods, and then demonstrate how one can significantly improve these methods’ generalizability by an efficient representative subset selection method. This involves selecting a coreset (a weighted subset) that minimizes a measure of discrepancy between the statistics of the coreset and the full set. Using simulated and real functional magnetic resonance imaging (fMRI) data, we demonstrate significant scalability and source separation advantages of our “coreIVA-G” method vs. other JBSS methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过核集进行大规模独立向量分析(IVA-G)
联合盲源分离(JBSS)涉及将多个矩阵(即“数据集”)分解为数据集之间统计依赖而数据集内部独立的“源”。尽管JBSS方法对于分析多个数据集很有用,但它的计算成本很高,而且对于数百或数千个数据集来说通常很难处理。为了解决这个问题,我们提出了一种方法,说明如何使用数据集的一个子集在整个数据集上执行有效的JBSS。我们提出了两种这样的方法:使用多元高斯模型(IVA- g)的独立向量分析(IVA)的数值扩展,以及最近提出的类似于广义联合对角化(GJD)的分析方法。我们推导了这两种方法的不可辨识性条件,然后证明了如何通过一种有效的代表性子集选择方法来显著提高这两种方法的可泛化性。这涉及到选择一个核心集(一个加权子集),使核心集的统计数据与完整集之间的差异最小化。通过模拟和真实的功能磁共振成像(fMRI)数据,我们证明了与其他JBSS方法相比,我们的“coreva - g”方法具有显著的可扩展性和源分离优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent Tracking Multiple Resolvable Group Targets with Coordinated Motion via Labeled Random Finite Sets Energy-Efficient Flat Precoding for MIMO Systems Successive Refinement in Large-Scale Computation: Expediting Model Inference Applications ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1