Coding-Based Data Compression for Multichannel SAR

Michele Martone;Nicola Gollin;Gerhard Krieger;Ernesto Imbembo;Paola Rizzoli
{"title":"Coding-Based Data Compression for Multichannel SAR","authors":"Michele Martone;Nicola Gollin;Gerhard Krieger;Ernesto Imbembo;Paola Rizzoli","doi":"10.1109/LGRS.2024.3510433","DOIUrl":null,"url":null,"abstract":"Multichannel synthetic aperture radar (MC-SAR) allows for high-resolution imaging of a wide swath (HRWS), at the cost of acquiring and downlinking a significantly larger amount of data, compared with conventional SAR systems. In this letter, we discuss the potential of efficient data volume reduction (DVR) for MC-SAR. Specifically, we focus on methods based on transform coding (TC) and linear predictive coding (LPC), which exploit the redundancy introduced in the raw data by the finer azimuth sampling peculiar to the MC system. The proposed approaches, in combination with a variable-bit quantization, allow for the optimization of the resulting performance and data rate. We consider three exemplary yet realistic MC-SAR systems, and we conduct simulations and analyses on synthetic SAR data considering different radar backscatter distributions, which demonstrate the effectiveness of the proposed methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772623","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10772623/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multichannel synthetic aperture radar (MC-SAR) allows for high-resolution imaging of a wide swath (HRWS), at the cost of acquiring and downlinking a significantly larger amount of data, compared with conventional SAR systems. In this letter, we discuss the potential of efficient data volume reduction (DVR) for MC-SAR. Specifically, we focus on methods based on transform coding (TC) and linear predictive coding (LPC), which exploit the redundancy introduced in the raw data by the finer azimuth sampling peculiar to the MC system. The proposed approaches, in combination with a variable-bit quantization, allow for the optimization of the resulting performance and data rate. We consider three exemplary yet realistic MC-SAR systems, and we conduct simulations and analyses on synthetic SAR data considering different radar backscatter distributions, which demonstrate the effectiveness of the proposed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于编码的多通道合成孔径雷达数据压缩
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deeper and Broader Multimodal Fusion: Cascaded Forest-of-Experts for Land Cover Classification Impact of Targeted Sounding Observations From FY-4B GIIRS on Two Super Typhoon Forecasts in 2024 Structural Representation-Guided GAN for Remote Sensing Image Cloud Removal Multispectral Airborne LiDAR Point Cloud Classification With Maximum Entropy Hierarchical Pooling A Satellite Selection Algorithm for GNSS-R InSAR Elevation Deformation Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1