Modelling combined diffusion and surface resistances in adsorbent particles: zero length column for spherical and slab geometries

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-12-14 DOI:10.1007/s10450-024-00557-5
Stefano Brandani, Enzo Mangano
{"title":"Modelling combined diffusion and surface resistances in adsorbent particles: zero length column for spherical and slab geometries","authors":"Stefano Brandani,&nbsp;Enzo Mangano","doi":"10.1007/s10450-024-00557-5","DOIUrl":null,"url":null,"abstract":"<div><p>Mass transport in nanoporous materials is a key property that allows to improve the performance of many gas separation processes and design more efficient heterogeneous catalytic reactors. In many instances a combination of surface resistance and internal diffusion are present. The combined model for surface barrier and diffusion in a ZLC system is discussed in detail and the analytical solutions valid for the traditional and the partial loading experiments have been derived for the spherical and slab geometries. The model reduces to the limiting forms of pure diffusion when <span>\\(\\frac{k{R}_{p}}{D}&gt;100\\)</span>, and pure surface barrier when <span>\\(\\frac{k{R}_{p}}{D}&lt;1\\)</span>. This study has shown that most literature studies have analysed ZLC responses incorrectly based on an effective combined dimensionless parameter. Two methods are described to obtain the parameters from the long-time asymptotic behaviour of the response curves. Both approaches have been demonstrated on curves generated from the full model solution and experimental data on an etched sample of Y zeolite. Both the analysis of the model and of the experimental results confirm that to characterize combined surface barriers and diffusion one should perform at least experiments at two different flowrates where the system is kinetically controlled, and crucially a partial loading experiment with a time to the switch which should be at least an order of magnitude smaller than the smallest of the diffusion and surface barrier times.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10450-024-00557-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00557-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mass transport in nanoporous materials is a key property that allows to improve the performance of many gas separation processes and design more efficient heterogeneous catalytic reactors. In many instances a combination of surface resistance and internal diffusion are present. The combined model for surface barrier and diffusion in a ZLC system is discussed in detail and the analytical solutions valid for the traditional and the partial loading experiments have been derived for the spherical and slab geometries. The model reduces to the limiting forms of pure diffusion when \(\frac{k{R}_{p}}{D}>100\), and pure surface barrier when \(\frac{k{R}_{p}}{D}<1\). This study has shown that most literature studies have analysed ZLC responses incorrectly based on an effective combined dimensionless parameter. Two methods are described to obtain the parameters from the long-time asymptotic behaviour of the response curves. Both approaches have been demonstrated on curves generated from the full model solution and experimental data on an etched sample of Y zeolite. Both the analysis of the model and of the experimental results confirm that to characterize combined surface barriers and diffusion one should perform at least experiments at two different flowrates where the system is kinetically controlled, and crucially a partial loading experiment with a time to the switch which should be at least an order of magnitude smaller than the smallest of the diffusion and surface barrier times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸附剂颗粒中的综合扩散和表面阻力建模:球形和板状几何形状的零长度柱
纳米多孔材料中的质量传输是一种关键特性,它可以提高许多气体分离过程的性能,并设计出更高效的异相催化反应器。在许多情况下,表面阻力和内部扩散相结合。本文详细讨论了 ZLC 系统中表面阻力和扩散的组合模型,并推导出了球形和板状几何结构的传统和部分加载实验的有效解析解。该模型在(\frac{k{R}_{p}}{D}>100\)时简化为纯扩散的极限形式,在(\frac{k{R}_{p}}{D}<1\)时简化为纯表面屏障的极限形式。这项研究表明,大多数文献研究基于有效的组合无量纲参数对 ZLC 响应进行了错误的分析。本文介绍了从响应曲线的长期渐近行为中获取参数的两种方法。这两种方法都在 Y 沸石蚀刻样品的完整模型解决方案和实验数据生成的曲线上得到了验证。对模型和实验结果的分析都证实,要确定表面势垒和扩散相结合的特性,至少应在两个不同的流速下进行实验,使系统受到动力学控制,最重要的是进行部分加载实验,其切换时间至少应比扩散和表面势垒的最小时间小一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Graphene Oxide as a Highly Efficient and Reusable Adsorbent for Simultaneous Removal of Parabens: Optimization by Response Surface Methodology, Adsorption Isotherms and Reusability Studies The effect of double-doped (B, N) on graphene’s N2O4 gas adsorption performance: an ab initio study Enhanced rGO/ZnO/Chitosan Nanozyme Photocatalytic Technology for Efficient Degradation of Diazinon Pesticide Contaminated Water Modelling combined diffusion and surface resistances in adsorbent particles: zero length column for spherical and slab geometries Hierarchically porous composites containing mining tailings-based geopolymer and zeolite 13X: application for carbon dioxide sequestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1