Mariana Schneider, Enrique Rodríguez-Castellón, M. Olga Guerrero-Pérez, Dachamir Hotza, Agenor De Noni Junior, Regina de Fátima Peralta Muniz Moreira
{"title":"Hierarchically porous composites containing mining tailings-based geopolymer and zeolite 13X: application for carbon dioxide sequestration","authors":"Mariana Schneider, Enrique Rodríguez-Castellón, M. Olga Guerrero-Pérez, Dachamir Hotza, Agenor De Noni Junior, Regina de Fátima Peralta Muniz Moreira","doi":"10.1007/s10450-024-00569-1","DOIUrl":null,"url":null,"abstract":"<div><p>One promising approach to addressing global warming involves capturing storing and reusing greenhouse gas emissions. Following separation, usually via adsorption, potential CO<sub>2</sub> emissions capture rates can reach up to 90%. Hence, It is crucial to enhance efficiency and reduce costs associated with CO<sub>2</sub> capture and utilization processes. This study explores the synthesis of geopolymer/zeolite composites based on phosphate amine tailings for CO<sub>2</sub> capture applications. These materials offer benign environmental advantages and demonstrate reversible adsorption and desorption of carbon dioxide. The research compares the adsorption capacities of the synthesized materials with the geopolymer and the commercial Zeolite 13X, assessing their performance for the CO<sub>2</sub>, H<sub>2</sub>, and CO adsorption at various temperatures (30, 50, and 100 °C). Furthermore, the samples underwent thorough characterization by XRF, XRD, FTIR, SEM, EDS, XPS, NMR, micro-CT, density, BET surface area, and porosity. The high surface area and low porosity of the materials influence directly in the adsorption capacity, which increases with the addition of more zeolite on the composite. The incorporation of 30% (w/w) of zeolite to the composite yielded notable adsorption capacities at 30 ºC and 1 bar (~ 2.6 mmol·g<sup>− 1</sup>).</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"31 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00569-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One promising approach to addressing global warming involves capturing storing and reusing greenhouse gas emissions. Following separation, usually via adsorption, potential CO2 emissions capture rates can reach up to 90%. Hence, It is crucial to enhance efficiency and reduce costs associated with CO2 capture and utilization processes. This study explores the synthesis of geopolymer/zeolite composites based on phosphate amine tailings for CO2 capture applications. These materials offer benign environmental advantages and demonstrate reversible adsorption and desorption of carbon dioxide. The research compares the adsorption capacities of the synthesized materials with the geopolymer and the commercial Zeolite 13X, assessing their performance for the CO2, H2, and CO adsorption at various temperatures (30, 50, and 100 °C). Furthermore, the samples underwent thorough characterization by XRF, XRD, FTIR, SEM, EDS, XPS, NMR, micro-CT, density, BET surface area, and porosity. The high surface area and low porosity of the materials influence directly in the adsorption capacity, which increases with the addition of more zeolite on the composite. The incorporation of 30% (w/w) of zeolite to the composite yielded notable adsorption capacities at 30 ºC and 1 bar (~ 2.6 mmol·g− 1).
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.