A. S. Lileev, J. Kargin, Y. V. Konyukhov, D. G. Zhukov, H. Sanchez Cornejo, Ji Won Seo, S. N. Holmes, J. Albino Aguiar, C. H. W. Barnes, L. De Los Santos Valladares
{"title":"The Effects of Thermomagnetic Treatment on the Magnetic Properties of Nanocrystalline Fe–O and Fe-Co–O Pressed Compacts","authors":"A. S. Lileev, J. Kargin, Y. V. Konyukhov, D. G. Zhukov, H. Sanchez Cornejo, Ji Won Seo, S. N. Holmes, J. Albino Aguiar, C. H. W. Barnes, L. De Los Santos Valladares","doi":"10.1007/s10948-024-06837-z","DOIUrl":null,"url":null,"abstract":"<div><p>The influence of thermal and thermomagnetic treatment on the magnetic properties of iron—cobalt oxides compacts fabricated by powder metallurgy is studied. The influence of magnetic pulse processing (MPP) on the formation of the phase composition and magnetic properties of nanocrystalline α-Fe (50%) + Fe<sub>2</sub>O<sub>3</sub> (50%); α-Fe (50%) + Fe<sub>2</sub>O<sub>3</sub> (40%) + Co<sub>3</sub>O<sub>4</sub> (10%) and α-Fe (50%) + Fe<sub>2</sub>O<sub>3</sub> (30%) + Co<sub>3</sub>O<sub>4</sub> (20%) pressed powder compacts during synthesis in a high-energy mill and subsequent annealing have been investigated. According to the X-ray diffraction analysis, annealing α-Fe (50%) + Fe<sub>2</sub>O<sub>3</sub> (50%) pressed samples at 250 ℃ in air, promotes the oxidation of α-Fe and FeO to magnetite (Fe<sub>3</sub>O<sub>4</sub>). Additional annealing of the compact in vacuum at 250 ℃ increases its remnant magnetization and magnetic anisotropy. Whereas, increasing the concentration of Co<sub>3</sub>O<sub>4</sub> oxide has no strong effect on the coercivity and residual magnetization of the compacts. Eventually, thermomagnetic treatment of the α-Fe (50%) + Fe<sub>2</sub>O<sub>3</sub> (30%) + Co<sub>3</sub>O<sub>4</sub> (20%) system does not improve its magnetic properties.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10948-024-06837-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-024-06837-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of thermal and thermomagnetic treatment on the magnetic properties of iron—cobalt oxides compacts fabricated by powder metallurgy is studied. The influence of magnetic pulse processing (MPP) on the formation of the phase composition and magnetic properties of nanocrystalline α-Fe (50%) + Fe2O3 (50%); α-Fe (50%) + Fe2O3 (40%) + Co3O4 (10%) and α-Fe (50%) + Fe2O3 (30%) + Co3O4 (20%) pressed powder compacts during synthesis in a high-energy mill and subsequent annealing have been investigated. According to the X-ray diffraction analysis, annealing α-Fe (50%) + Fe2O3 (50%) pressed samples at 250 ℃ in air, promotes the oxidation of α-Fe and FeO to magnetite (Fe3O4). Additional annealing of the compact in vacuum at 250 ℃ increases its remnant magnetization and magnetic anisotropy. Whereas, increasing the concentration of Co3O4 oxide has no strong effect on the coercivity and residual magnetization of the compacts. Eventually, thermomagnetic treatment of the α-Fe (50%) + Fe2O3 (30%) + Co3O4 (20%) system does not improve its magnetic properties.
期刊介绍:
The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.