Optical Biosensor for Bacteremia detection from human blood samples at a label-free Liquid Crystal-Aqueous Interface: A Rapid and Point-of-Care approach.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-12-07 DOI:10.1016/j.jcis.2024.12.030
Sayani Das, Partha Barman, Ranadhir Chakraborty, Anuj Upadhyay, Archna Sagdeo, Przemysław Kula, Malay Kumar Das, Susanta Sinha Roy
{"title":"Optical Biosensor for Bacteremia detection from human blood samples at a label-free Liquid Crystal-Aqueous Interface: A Rapid and Point-of-Care approach.","authors":"Sayani Das, Partha Barman, Ranadhir Chakraborty, Anuj Upadhyay, Archna Sagdeo, Przemysław Kula, Malay Kumar Das, Susanta Sinha Roy","doi":"10.1016/j.jcis.2024.12.030","DOIUrl":null,"url":null,"abstract":"<p><p>Detection of bacteremia requires recognizing bloodstream bacteria. Early identification of bacteremia is imperative for treatment and prevents the escalation to systemic infections like septicaemia. This paper introduces a novel, label-free biosensor based on liquid crystals (LCs), designed to offer rapid and reliable optical detection of blood pathogens without using traditional PCR methods. The biosensor utilizes 16S rRNA, a key structural component of the bacterial genome, as a molecular recognition probe. For accurate detection of target DNA, a nematic LC is positioned within a transmission electron microscopy (TEM) grid cell on a DMOAP-coated glass surface and treated with a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB), to facilitate probe adhesion at the LC-aqueous interface. Initially, the CTAB-coated LC displays a homeotropic orientation, but it shifts to a planar/tilted orientation when the primer is added. Upon exposure to the target DNA, the LC returns to its homeotropic configuration, which can be observed using a polarizing optical microscope (POM) fitted with crossed polarizers. An optimal primer adsorption density of 100 nM allows detection of target DNA at concentrations as low as 0.02 nM. The biosensor has been verified for real-time, point-of-care utility by successfully detecting the genomic DNA of the bacterium E. coli cultured in human blood. The operational mechanism of this biosensor has also been confirmed using Circular Dichroism and Synchrotron X-ray Solution Scattering Measurements. Due to its high sensitivity and label-free nature, this biosensor provides a faster, more practical and user-friendly alternative to traditional pathogen detection methods from blood samples of bacteremia patients.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"79-89"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Detection of bacteremia requires recognizing bloodstream bacteria. Early identification of bacteremia is imperative for treatment and prevents the escalation to systemic infections like septicaemia. This paper introduces a novel, label-free biosensor based on liquid crystals (LCs), designed to offer rapid and reliable optical detection of blood pathogens without using traditional PCR methods. The biosensor utilizes 16S rRNA, a key structural component of the bacterial genome, as a molecular recognition probe. For accurate detection of target DNA, a nematic LC is positioned within a transmission electron microscopy (TEM) grid cell on a DMOAP-coated glass surface and treated with a cationic surfactant, cetyl trimethyl ammonium bromide (CTAB), to facilitate probe adhesion at the LC-aqueous interface. Initially, the CTAB-coated LC displays a homeotropic orientation, but it shifts to a planar/tilted orientation when the primer is added. Upon exposure to the target DNA, the LC returns to its homeotropic configuration, which can be observed using a polarizing optical microscope (POM) fitted with crossed polarizers. An optimal primer adsorption density of 100 nM allows detection of target DNA at concentrations as low as 0.02 nM. The biosensor has been verified for real-time, point-of-care utility by successfully detecting the genomic DNA of the bacterium E. coli cultured in human blood. The operational mechanism of this biosensor has also been confirmed using Circular Dichroism and Synchrotron X-ray Solution Scattering Measurements. Due to its high sensitivity and label-free nature, this biosensor provides a faster, more practical and user-friendly alternative to traditional pathogen detection methods from blood samples of bacteremia patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在无标记液晶-水界面上从人体血液样本中检测菌血症的光学生物传感器:一种快速的护理点方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Regulating the dispersion of CuO over SiO2 surface for selective oxidation of isobutane to tert-butanol. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy. A novel strategy to improve the electrochemical properties of in-situ polymerized 1,3-dioxolane electrolyte in lithium metal batteries. Coupling multifunctional ZnCoAl-layered double hydroxides on Ti-Fe2O3 photoanode for efficient photoelectrochemical water oxidation. In-situ construction of high-performance artificial solid electrolyte interface layer on anode surfaces for anode-free lithium metal batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1