FGL1 facilitates rather than suppresses anticancer immunity against microsatellite instable gastric cancer.

IF 5 3区 医学 Q1 GENETICS & HEREDITY Genes and immunity Pub Date : 2024-12-13 DOI:10.1038/s41435-024-00314-2
Zhenyuan Qian, Xufan Cai, Jianzhang Wu, Kun Ke, Zaiyuan Ye, Fang Wu
{"title":"FGL1 facilitates rather than suppresses anticancer immunity against microsatellite instable gastric cancer.","authors":"Zhenyuan Qian, Xufan Cai, Jianzhang Wu, Kun Ke, Zaiyuan Ye, Fang Wu","doi":"10.1038/s41435-024-00314-2","DOIUrl":null,"url":null,"abstract":"<p><p>Microsatellite instability (MSI) is a phenotype characterized by changes in the sequence length of microsatellites in tumor cells and is closely linked to tumorigenesis and prognosis. Immune checkpoint inhibitors have shown good therapeutic effects in gastric cancer (GC) with MSI-high (MSI-H). However, the role of the novel immune checkpoint fibrinogen-like protein 1 (FGL1) in GC treatment has not been fully investigated. FGL1 expression in GC tissues and the difference in FGL1 immune infiltration between MSI/ microsatellite stability (MSS) patients were analyzed by bioinformatics and were verified in clinical samples. Xenograft models of MSS and MSI GC were constructed in human immune reconstitution mice, and FGL1 expression in tumors was detected. Immunofluorescence and immunohistochemistry were used to assay the infiltration of immune cells in the two types of mice. Cytotoxicity and chemotaxis tests were used to detect the toxicity and chemotaxis of CD8<sup>+</sup>T cells to GC cells, respectively. The cytokine content was detected by enzyme-linked immunosorbent assay. The therapeutic effects of FGL1 antibody on different types of GC were analyzed by xenograft mouse models. FGL1 exhibited significantly higher expression in GC, and its expression and immune cell infiltration levels were significantly higher in MSI GC than in MSS GC. CD8<sup>+</sup>T cells were significantly more effective in killing and chemotaxis of MSI GC cells than MSS GC cells. The FGL1 antibody was more effective in treating MSI GC.The novel immunosuppressor FGL1 antibody exerts a good therapeutic influence on MSI GC. These findings provide a basis for the development of drugs targeting FGL1 for MSI GC treatment.</p>","PeriodicalId":12691,"journal":{"name":"Genes and immunity","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41435-024-00314-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Microsatellite instability (MSI) is a phenotype characterized by changes in the sequence length of microsatellites in tumor cells and is closely linked to tumorigenesis and prognosis. Immune checkpoint inhibitors have shown good therapeutic effects in gastric cancer (GC) with MSI-high (MSI-H). However, the role of the novel immune checkpoint fibrinogen-like protein 1 (FGL1) in GC treatment has not been fully investigated. FGL1 expression in GC tissues and the difference in FGL1 immune infiltration between MSI/ microsatellite stability (MSS) patients were analyzed by bioinformatics and were verified in clinical samples. Xenograft models of MSS and MSI GC were constructed in human immune reconstitution mice, and FGL1 expression in tumors was detected. Immunofluorescence and immunohistochemistry were used to assay the infiltration of immune cells in the two types of mice. Cytotoxicity and chemotaxis tests were used to detect the toxicity and chemotaxis of CD8+T cells to GC cells, respectively. The cytokine content was detected by enzyme-linked immunosorbent assay. The therapeutic effects of FGL1 antibody on different types of GC were analyzed by xenograft mouse models. FGL1 exhibited significantly higher expression in GC, and its expression and immune cell infiltration levels were significantly higher in MSI GC than in MSS GC. CD8+T cells were significantly more effective in killing and chemotaxis of MSI GC cells than MSS GC cells. The FGL1 antibody was more effective in treating MSI GC.The novel immunosuppressor FGL1 antibody exerts a good therapeutic influence on MSI GC. These findings provide a basis for the development of drugs targeting FGL1 for MSI GC treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGL1促进而非抑制针对微卫星不稳定胃癌的抗癌免疫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genes and immunity
Genes and immunity 医学-免疫学
CiteScore
8.90
自引率
4.00%
发文量
28
审稿时长
6-12 weeks
期刊介绍: Genes & Immunity emphasizes studies investigating how genetic, genomic and functional variations affect immune cells and the immune system, and associated processes in the regulation of health and disease. It further highlights articles on the transcriptional and posttranslational control of gene products involved in signaling pathways regulating immune cells, and protective and destructive immune responses.
期刊最新文献
Hypoxia-induced autophagy in pancreatic cancer counteracts the cytotoxicity of CD8+ T cells by inhibiting the expression of MHC-I. Understanding rare genetic variants within the terminal pathway of complement system in preeclampsia. FGL1 facilitates rather than suppresses anticancer immunity against microsatellite instable gastric cancer. Correction: Roles of TULA-family proteins in T cells and autoimmune diseases. GXYLT2: an emerging therapeutic target and predictive biomarker for anti-PD-1 efficacy in clear cell renal cell carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1