Histone lactylation-mediated overexpression of RASD2 promotes endometriosis progression via upregulating the SUMOylation of CTPS1.

IF 5 2区 生物学 Q2 CELL BIOLOGY American journal of physiology. Cell physiology Pub Date : 2024-12-13 DOI:10.1152/ajpcell.00493.2024
Ziwei Wang, Yanhong Mao, Zihan Wang, Shuwei Li, Zhidan Hong, Rong Zhou, Shaoyuan Xu, Yao Xiong, Yuanzhen Zhang
{"title":"Histone lactylation-mediated overexpression of RASD2 promotes endometriosis progression via upregulating the SUMOylation of CTPS1.","authors":"Ziwei Wang, Yanhong Mao, Zihan Wang, Shuwei Li, Zhidan Hong, Rong Zhou, Shaoyuan Xu, Yao Xiong, Yuanzhen Zhang","doi":"10.1152/ajpcell.00493.2024","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Histone lactylation is crucial in a variety of physiopathological processes, however, the function and mechanism of histone lactylation in endometriosis remain poorly understood. Therefore, the objective of this investigation was to illuminate the function and mechanism of histone lactylation in endometriosis. <b>Methods:</b> Immunohistochemistry was used to investigate the expression of histone lactylation. Cell Counting Kit-8 assay (CCK8), Transwell assay and endometriosis mouse models were used to investigate the effects of histone lactylation in vitro and in vivo. Transcriptomics and Immunoprecipitation-Mass Spectrometry (IP-MS), Western Blot, Co-Immunoprecipitation (Co-IP), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and chromatin immunoprecipitation-qPCR (ChIP-qPCR) were used to explore the intrinsic mechanisms. <b>Results:</b> In this study, we found that histone lactylation was upregulated in endometriosis and could promote endometriosis progression both in vivo and in vitro. Mechanistically, histone lactylation H3K18la promoted the transcription of Ras homolog enriched in striatum (RASD2), and RASD2, in turn, increased the stability of CTP synthase 1 (CTPS1) by promoting the SUMOylation and inhibiting the ubiquitination of CTPS1, thereby promoting endometriosis progression. <b>Conclusion:</b> Overall, our findings indicated that histone lactylation could promote the progression of endometriosis through the RASD2/CTPS1 axis. This investigation uncovered a novel mechanism and identified prospective targets for endometriosis diagnosis and therapy.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00493.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Histone lactylation is crucial in a variety of physiopathological processes, however, the function and mechanism of histone lactylation in endometriosis remain poorly understood. Therefore, the objective of this investigation was to illuminate the function and mechanism of histone lactylation in endometriosis. Methods: Immunohistochemistry was used to investigate the expression of histone lactylation. Cell Counting Kit-8 assay (CCK8), Transwell assay and endometriosis mouse models were used to investigate the effects of histone lactylation in vitro and in vivo. Transcriptomics and Immunoprecipitation-Mass Spectrometry (IP-MS), Western Blot, Co-Immunoprecipitation (Co-IP), quantitative reverse transcription polymerase chain reaction (qRT-PCR) and chromatin immunoprecipitation-qPCR (ChIP-qPCR) were used to explore the intrinsic mechanisms. Results: In this study, we found that histone lactylation was upregulated in endometriosis and could promote endometriosis progression both in vivo and in vitro. Mechanistically, histone lactylation H3K18la promoted the transcription of Ras homolog enriched in striatum (RASD2), and RASD2, in turn, increased the stability of CTP synthase 1 (CTPS1) by promoting the SUMOylation and inhibiting the ubiquitination of CTPS1, thereby promoting endometriosis progression. Conclusion: Overall, our findings indicated that histone lactylation could promote the progression of endometriosis through the RASD2/CTPS1 axis. This investigation uncovered a novel mechanism and identified prospective targets for endometriosis diagnosis and therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
期刊最新文献
Alterations in the transcriptome and microRNAs of adipose-derived mesenchymal stem cells from different sites in rats during aging. The HIF2α-dependent upregulation of SETDB1 facilitates hypoxia-induced functional and phenotypical changes of pulmonary microvascular endothelial cells. β3-adrenergic agonist counters oxidative stress and Na+-K+ pump inhibitory S-glutathionylation of placental cells: implications for preeclampsia. Role of myofiber-specific FoxP1 in pancreatic cancer-induced muscle wasting. No detectable loss of myonuclei from human muscle fibers after 6 wk of immobilization following an Achilles tendon rupture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1