A MPET2-mPBPK model for subcutaneous injection of biotherapeutics with different molecular weights: From local scale to whole-body scale.

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2024-12-10 DOI:10.1016/j.cmpb.2024.108543
Hao Wang, Mario de Lucio, Tianyi Hu, Yu Leng, Hector Gomez
{"title":"A MPET<sup>2</sup>-mPBPK model for subcutaneous injection of biotherapeutics with different molecular weights: From local scale to whole-body scale.","authors":"Hao Wang, Mario de Lucio, Tianyi Hu, Yu Leng, Hector Gomez","doi":"10.1016/j.cmpb.2024.108543","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Subcutaneous injection of biotherapeutics has attracted considerable attention in the pharmaceutical industry. However, there is limited understanding of the mechanisms underlying the absorption of drugs with different molecular weights and the delivery of drugs from the injection site to the targeted tissue.</p><p><strong>Methods: </strong>We propose the MPET<sup>2</sup>-mPBPK model to address this issue. This multiscale model couples the MPET<sup>2</sup> model, which describes subcutaneous injection at the local tissue scale from a biomechanical view, with a post-injection absorption model at injection site and a minimal physiologically-based pharmacokinetic (mPBPK) model at whole-body scale. Utilizing the principles of tissue biomechanics and fluid dynamics, the local MPET<sup>2</sup> model provides solutions that account for tissue deformation and drug absorption in local blood vessels and initial lymphatic vessels during injection. Additionally, we introduce a model accounting for the molecular weight effect on the absorption by blood vessels, and a nonlinear model accounting for the absorption in lymphatic vessels. The post-injection model predicts drug absorption in local blood vessels and initial lymphatic vessels, which are integrated into the whole-body mPBPK model to describe the pharmacokinetic behaviors of the absorbed drug in the circulatory and lymphatic system.</p><p><strong>Results: </strong>We establish a numerical model which links the biomechanical process of subcutaneous injection at local tissue scale and the pharmacokinetic behaviors of injected biotherapeutics at whole-body scale. With the help of the model, we propose an explicit relationship between the reflection coefficient and the molecular weight and predict the bioavalibility of biotherapeutics with varying molecular weights via subcutaneous injection.</p><p><strong>Conclusion: </strong>The considered drug absorption mechanisms enable us to study the differences in local drug absorption and whole-body drug distribution with varying molecular weights. This model enhances the understanding of drug absorption mechanisms and transport routes in the circulatory system for drugs of different molecular weights, and holds the potential to facilitate the application of computational modeling to drug formulation.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"260 ","pages":"108543"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108543","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Subcutaneous injection of biotherapeutics has attracted considerable attention in the pharmaceutical industry. However, there is limited understanding of the mechanisms underlying the absorption of drugs with different molecular weights and the delivery of drugs from the injection site to the targeted tissue.

Methods: We propose the MPET2-mPBPK model to address this issue. This multiscale model couples the MPET2 model, which describes subcutaneous injection at the local tissue scale from a biomechanical view, with a post-injection absorption model at injection site and a minimal physiologically-based pharmacokinetic (mPBPK) model at whole-body scale. Utilizing the principles of tissue biomechanics and fluid dynamics, the local MPET2 model provides solutions that account for tissue deformation and drug absorption in local blood vessels and initial lymphatic vessels during injection. Additionally, we introduce a model accounting for the molecular weight effect on the absorption by blood vessels, and a nonlinear model accounting for the absorption in lymphatic vessels. The post-injection model predicts drug absorption in local blood vessels and initial lymphatic vessels, which are integrated into the whole-body mPBPK model to describe the pharmacokinetic behaviors of the absorbed drug in the circulatory and lymphatic system.

Results: We establish a numerical model which links the biomechanical process of subcutaneous injection at local tissue scale and the pharmacokinetic behaviors of injected biotherapeutics at whole-body scale. With the help of the model, we propose an explicit relationship between the reflection coefficient and the molecular weight and predict the bioavalibility of biotherapeutics with varying molecular weights via subcutaneous injection.

Conclusion: The considered drug absorption mechanisms enable us to study the differences in local drug absorption and whole-body drug distribution with varying molecular weights. This model enhances the understanding of drug absorption mechanisms and transport routes in the circulatory system for drugs of different molecular weights, and holds the potential to facilitate the application of computational modeling to drug formulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同分子量生物治疗药物皮下注射的 MPET2-mPBPK 模型:从局部尺度到全身尺度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Multimodal autism detection: Deep hybrid model with improved feature level fusion. A simulation study of the impact of drug-IKr binding mechanisms on biomarkers of proarrhythmic risk reveals a crucial role in reverse use-dependence of action potential duration and a marked influence on the vulnerable window. Robust multi-modal fusion architecture for medical data with knowledge distillation. Influence of vascular embolism level and drug injection rate on thrombolytic therapy of bifurcated femoral vein: Numerical simulation and validation study. Design and validation of PACTUS: A gamified electronic device for stroke rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1