A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors.

IF 11.7 1区 医学 Q1 CELL BIOLOGY Cell Reports Medicine Pub Date : 2024-12-17 Epub Date: 2024-12-12 DOI:10.1016/j.xcrm.2024.101843
Xiangdong Li, Renjie Ding, Zhenhua Liu, Wilhem M S Teixeira, Jingwei Ye, Li Tian, Haojiang Li, Shengjie Guo, Kai Yao, Zikun Ma, Zhuowei Liu
{"title":"A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors.","authors":"Xiangdong Li, Renjie Ding, Zhenhua Liu, Wilhem M S Teixeira, Jingwei Ye, Li Tian, Haojiang Li, Shengjie Guo, Kai Yao, Zikun Ma, Zhuowei Liu","doi":"10.1016/j.xcrm.2024.101843","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the histopathology of residual retroperitoneal masses (RMMs) before post-chemotherapy retroperitoneal lymph node dissection in metastatic nonseminomatous germ cell tumors (NSGCTs) can guide individualized treatment and minimize complications. Previous single approach-based models perform poorly in validation. Herein, we introduce a machine learning model that evolves from a single-dimensional tumor diameter to incorporate high-dimensional radiomic features, with its effectiveness assessed using the macro-average area under the receiver operating characteristic curves (AUCs). In addition, we utilize more precise and specific microRNAs (miRNAs), not common clinical indicators, to construct an integrated radiomics-miRNA predictive system, achieving an AUC of 0.91 (0.80-0.99) in the prospective test set. We further develop a web-based dynamic nomogram for swift and precise calculation of the histopathological probabilities of RMMs based on radiomic scores and serum miRNA levels. The radiomics-miRNA integrated system offers a promising tool to select personalized treatments for patients with metastatic NSGCT.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101843"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11722113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101843","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the histopathology of residual retroperitoneal masses (RMMs) before post-chemotherapy retroperitoneal lymph node dissection in metastatic nonseminomatous germ cell tumors (NSGCTs) can guide individualized treatment and minimize complications. Previous single approach-based models perform poorly in validation. Herein, we introduce a machine learning model that evolves from a single-dimensional tumor diameter to incorporate high-dimensional radiomic features, with its effectiveness assessed using the macro-average area under the receiver operating characteristic curves (AUCs). In addition, we utilize more precise and specific microRNAs (miRNAs), not common clinical indicators, to construct an integrated radiomics-miRNA predictive system, achieving an AUC of 0.91 (0.80-0.99) in the prospective test set. We further develop a web-based dynamic nomogram for swift and precise calculation of the histopathological probabilities of RMMs based on radiomic scores and serum miRNA levels. The radiomics-miRNA integrated system offers a promising tool to select personalized treatments for patients with metastatic NSGCT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由血清微RNA和放射组学组成的预测系统,用于预测转移性非肉芽肿性生殖细胞肿瘤的腹膜后残留肿块。
在转移性非半细胞性生殖细胞肿瘤(nsgct)化疗后腹膜后淋巴结清扫前预测残余腹膜后肿块(RMMs)的组织病理学可以指导个体化治疗并减少并发症。以前基于单一方法的模型在验证中表现不佳。本文中,我们引入了一种机器学习模型,该模型从单维肿瘤直径演变为包含高维放射学特征,并使用接受者工作特征曲线(auc)下的宏观平均面积来评估其有效性。此外,我们利用更精确和特异性的microrna (mirna),而不是常见的临床指标,构建了一个集成的放射组学- mirna预测系统,在前瞻性测试集中实现了0.91(0.80-0.99)的AUC。我们进一步开发了一种基于网络的动态图,用于基于放射组学评分和血清miRNA水平快速准确地计算RMMs的组织病理概率。放射组学- mirna集成系统为转移性NSGCT患者选择个性化治疗提供了一个有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
期刊最新文献
Lurbinectedin sensitizes PD-L1 blockade therapy by activating STING-IFN signaling in small-cell lung cancer. Targeting the mevalonate pathway potentiates NUAK1 inhibition-induced immunogenic cell death and antitumor immunity. MFGE8 induces anti-PD-1 therapy resistance by promoting extracellular vesicle sorting of PD-L1. A genome-wide association study identified PRKCB as a causal gene and therapeutic target for Mycobacterium avium complex disease. Multimodal integration using a machine learning approach facilitates risk stratification in HR+/HER2- breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1