Yongnian Zeng , Lujuan Wu , Xue Jiang , Yixin Hu , Yinli Jin , Hankun Hu , Wei Li
{"title":"Self-assembled hyaluronic acid nanoparticles delivered by polymeric microneedles for targeted and long-acting therapy of psoriasis","authors":"Yongnian Zeng , Lujuan Wu , Xue Jiang , Yixin Hu , Yinli Jin , Hankun Hu , Wei Li","doi":"10.1016/j.ijpharm.2024.125073","DOIUrl":null,"url":null,"abstract":"<div><div>Psoriasis is an autoimmune-driven inflammatory skin disease, clinically characterized by skin thickening, erythema, and scaling, significantly impacting patients’ life quality and mental health. Clinically, oral pill or injection of methotrexate (MTX) formulation is a common route for psoriasis therapy, while both methods often cause undesired toxicity due to systemic administration, and limit patient compliance because of the frequent-dosing requirement. Here, we introduce a dissolvable microneedle (MN) patch made of polyvinyl alcohol (PVA) that incorporates self-assembled hyaluronic acid (HA) nanoparticles (NPs) conjugating MTX, which is designed for treating skin diseases, offering reduced adverse effects and improved patient adherence through its targeted and long-acting properties. Upon transdermal delivery via polymeric MNs, the HA-based therapeutic NPs actively target to the inflammatory skin cells via the interaction of HA group with CD44 protein that is highly expressed on the cell membrane in the psoriatic skin. Moreover, the HA-based NPs undergo slow dissociation, thereby achieving sustained release of the MTX drug at the lesion site over 7 days. Due to the favorite features, in the imiquimod (IMQ)-induced psoriatic mouse, only one application of the polymeric MN patch achieves diminished epidermal hyperplasia, and reduced inflammatory factors expression, ultimately improving the psoriasis-like skin condition <em>in vivo</em>.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"669 ","pages":"Article 125073"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324013073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Psoriasis is an autoimmune-driven inflammatory skin disease, clinically characterized by skin thickening, erythema, and scaling, significantly impacting patients’ life quality and mental health. Clinically, oral pill or injection of methotrexate (MTX) formulation is a common route for psoriasis therapy, while both methods often cause undesired toxicity due to systemic administration, and limit patient compliance because of the frequent-dosing requirement. Here, we introduce a dissolvable microneedle (MN) patch made of polyvinyl alcohol (PVA) that incorporates self-assembled hyaluronic acid (HA) nanoparticles (NPs) conjugating MTX, which is designed for treating skin diseases, offering reduced adverse effects and improved patient adherence through its targeted and long-acting properties. Upon transdermal delivery via polymeric MNs, the HA-based therapeutic NPs actively target to the inflammatory skin cells via the interaction of HA group with CD44 protein that is highly expressed on the cell membrane in the psoriatic skin. Moreover, the HA-based NPs undergo slow dissociation, thereby achieving sustained release of the MTX drug at the lesion site over 7 days. Due to the favorite features, in the imiquimod (IMQ)-induced psoriatic mouse, only one application of the polymeric MN patch achieves diminished epidermal hyperplasia, and reduced inflammatory factors expression, ultimately improving the psoriasis-like skin condition in vivo.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.