Real-time spectroscopic tracking of efficient intersystem crossing triggered by the heavy-atom effect in di-heteroatomic organic phosphorescent molecules.
Zhinan Jiang, Yang Liu, Yonggang Yang, Tiantian Guan, Chaochao Qin, Yufang Liu
{"title":"Real-time spectroscopic tracking of efficient intersystem crossing triggered by the heavy-atom effect in di-heteroatomic organic phosphorescent molecules.","authors":"Zhinan Jiang, Yang Liu, Yonggang Yang, Tiantian Guan, Chaochao Qin, Yufang Liu","doi":"10.1364/OL.545637","DOIUrl":null,"url":null,"abstract":"<p><p>The development of efficient and long-lived halogen-free organic phosphorescent molecules remains a challenge. For the single-heteroatomic 9,10-dihydroacridine (AcH<sub>2</sub>), the evolution of singlet and triplet excited state absorption signals reveals an intersystem crossing (ISC) lifetime of 8.2 ns and a triplet state lifetime of 0.52 µs. In contrast, the ISC lifetimes of di-heteroatomic phenoxazine (PXZ) and phenothiazine (PTZ) are significantly accelerated to 1.7 ns and 1.1 ns, respectively, while the triplet state lifetimes are extended to 0.72 µs and 4 µs. These results confirm that the introduction of di-heteroatomic synergistic effects enhances ISC efficiency while simultaneously prolonging the triplet state lifetimes. Notably, these two critical factors are further improved in PTZ due to the heavy-atom effect of sulfur atom. The work emphasizes the di-heteroatomic synergistic effect, particularly the role of heteroatoms with large atomic numbers, which is crucial for the design of halogen-free organic phosphorescent materials.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"6940-6943"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.545637","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient and long-lived halogen-free organic phosphorescent molecules remains a challenge. For the single-heteroatomic 9,10-dihydroacridine (AcH2), the evolution of singlet and triplet excited state absorption signals reveals an intersystem crossing (ISC) lifetime of 8.2 ns and a triplet state lifetime of 0.52 µs. In contrast, the ISC lifetimes of di-heteroatomic phenoxazine (PXZ) and phenothiazine (PTZ) are significantly accelerated to 1.7 ns and 1.1 ns, respectively, while the triplet state lifetimes are extended to 0.72 µs and 4 µs. These results confirm that the introduction of di-heteroatomic synergistic effects enhances ISC efficiency while simultaneously prolonging the triplet state lifetimes. Notably, these two critical factors are further improved in PTZ due to the heavy-atom effect of sulfur atom. The work emphasizes the di-heteroatomic synergistic effect, particularly the role of heteroatoms with large atomic numbers, which is crucial for the design of halogen-free organic phosphorescent materials.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.