{"title":"Universal analyzer for measuring the orbital angular momentum spectrum of a randomly fluctuated beam.","authors":"Zhuoyi Wang, Xingyuan Lu, Zhiquan Hu, Jianbo Gao, Hao Zhang, Junan Zhu, Xiaotan Lu, Yiyi Hang, Yangjian Cai, Chengliang Zhao","doi":"10.1364/OL.542414","DOIUrl":null,"url":null,"abstract":"<p><p>The orbital angular momentum (OAM) of beams provides an additional degree of freedom and has been applied in various scientific and technological fields. Accurate and quantitative measurement of intensity distributions across different OAM modes, referred to as the OAM spectrum of a beam, is crucial. Here, we propose a straightforward and efficient experimental setup for measuring the OAM spectrum of a randomly fluctuating beam. By employing a modal decomposition analyzer, a randomly fluctuating light field can be decomposed into an incoherent superposition of a series of modes, followed by a coordinate transformation to calculate the OAM spectrum. This method is suitable for measuring the OAM spectrum of partially coherent beams and superposition of vortex beams. The experimental results are in good agreement with the theoretical predictions. Precise measurement of the OAM spectrum is critical for various applications in optical communications, quantum optics, and digital imaging.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7250-7253"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.542414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The orbital angular momentum (OAM) of beams provides an additional degree of freedom and has been applied in various scientific and technological fields. Accurate and quantitative measurement of intensity distributions across different OAM modes, referred to as the OAM spectrum of a beam, is crucial. Here, we propose a straightforward and efficient experimental setup for measuring the OAM spectrum of a randomly fluctuating beam. By employing a modal decomposition analyzer, a randomly fluctuating light field can be decomposed into an incoherent superposition of a series of modes, followed by a coordinate transformation to calculate the OAM spectrum. This method is suitable for measuring the OAM spectrum of partially coherent beams and superposition of vortex beams. The experimental results are in good agreement with the theoretical predictions. Precise measurement of the OAM spectrum is critical for various applications in optical communications, quantum optics, and digital imaging.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.