Experimental validation of XPM mitigation using a generalizable multi-task learning neural network.

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2024-12-15 DOI:10.1364/OL.535396
Sasipim Srivallapanondh, Pedro Freire, Bernhard Spinnler, Nelson Costa, Wolfgang Schairer, Antonio Napoli, Sergei K Turitsyn, Jaroslaw E Prilepsky
{"title":"Experimental validation of XPM mitigation using a generalizable multi-task learning neural network.","authors":"Sasipim Srivallapanondh, Pedro Freire, Bernhard Spinnler, Nelson Costa, Wolfgang Schairer, Antonio Napoli, Sergei K Turitsyn, Jaroslaw E Prilepsky","doi":"10.1364/OL.535396","DOIUrl":null,"url":null,"abstract":"<p><p>We address the development of efficient neural network (NN)-based post-equalizers in long-haul coherent-detection dense wavelength-division multiplexing (DWDM) optical transmission systems. To achieve a high level of generalization of the NN-based equalizers, we propose to employ multi-task learning (MTL). MTL refers to a single shared machine learning (NN) model that can perform multiple different (albeit related) tasks. We verify the good performance of the developed MTL equalizer model using experimental data as compared to the previously proposed approaches. Furthermore, we report how MTL can improve performance compared to single-task counterparts. We also demonstrate that reducing the complexity of the resulting MTL equalizer is possible without essential performance compromise.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"6900-6903"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.535396","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We address the development of efficient neural network (NN)-based post-equalizers in long-haul coherent-detection dense wavelength-division multiplexing (DWDM) optical transmission systems. To achieve a high level of generalization of the NN-based equalizers, we propose to employ multi-task learning (MTL). MTL refers to a single shared machine learning (NN) model that can perform multiple different (albeit related) tasks. We verify the good performance of the developed MTL equalizer model using experimental data as compared to the previously proposed approaches. Furthermore, we report how MTL can improve performance compared to single-task counterparts. We also demonstrate that reducing the complexity of the resulting MTL equalizer is possible without essential performance compromise.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用通用多任务学习神经网络对 XPM 减缓进行实验验证。
我们致力于在长距离相干检测密集波分复用(DWDM)光传输系统中开发基于神经网络(NN)的高效后均衡器。为了实现基于 NN 的均衡器的高度通用化,我们建议采用多任务学习(MTL)。多任务学习是指一个共享的机器学习(NN)模型可以执行多个不同(尽管相关)的任务。与之前提出的方法相比,我们利用实验数据验证了所开发的 MTL 均衡器模型的良好性能。此外,我们还报告了 MTL 与单任务对应方法相比如何提高性能。我们还证明,降低 MTL 均衡器的复杂性并不会对性能造成根本影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
All-fiber E + S band continuously tunable bismuth-doped germanosilicate fiber laser. Anomalous infrared conical emission during ordered multifilamentation in gases. Bio-inspired snapshot polarization-hyperspectral camera. Blind aberration correction for light field photography. Broadband plasmon waveguide resonance sensing for photoacoustic spectroscopic analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1