Generation of the broadband indistinguishable two-photon state in the telecom band.

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2024-12-15 DOI:10.1364/OL.542336
Jiarui Li, Yunru Fan, Ruiming Zhang, Xuegong Zhao, Panqiu Jiang, Hao Li, Lixing You, Zhen Wang, You Wang, Guangwei Deng, Haizhi Song, Guangcan Guo, Qiang Zhou
{"title":"Generation of the broadband indistinguishable two-photon state in the telecom band.","authors":"Jiarui Li, Yunru Fan, Ruiming Zhang, Xuegong Zhao, Panqiu Jiang, Hao Li, Lixing You, Zhen Wang, You Wang, Guangwei Deng, Haizhi Song, Guangcan Guo, Qiang Zhou","doi":"10.1364/OL.542336","DOIUrl":null,"url":null,"abstract":"<p><p>The indistinguishable photon-pair sources are valuable in many quantum information applications, such as quantum microscopy, quantum synchronization, and quantum metrology. Based on cascaded sum-frequency generation (SFG) and spontaneous parametric downconversion (SPDC) processes, we propose and demonstrate a scheme for the generation of spatially separated broadband indistinguishable photon pairs in the telecom band by using only one piece of a fiber-pigtailed periodically poled lithium niobate waveguide in a modified Sagnac loop. The measured joint spectral intensity of the generated entangled photon pairs is 7.27 THz (57.6 nm) at the full width at half-maximum (FWHM). The Hong-Ou-Mandel (HOM) interference of the generated broadband photons is measured with bandwidths of 5.35 THz (∼42.8 nm) and 100 GHz (∼0.8 nm), respectively. Visibility of 94.0±1.4<i>%</i> is achieved with the bandwidth of 5.35 THz, demonstrating good indistinguishability of the generated two-photon states, which could benefit the development of quantum microscopy and quantum synchronization.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"7162-7165"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.542336","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The indistinguishable photon-pair sources are valuable in many quantum information applications, such as quantum microscopy, quantum synchronization, and quantum metrology. Based on cascaded sum-frequency generation (SFG) and spontaneous parametric downconversion (SPDC) processes, we propose and demonstrate a scheme for the generation of spatially separated broadband indistinguishable photon pairs in the telecom band by using only one piece of a fiber-pigtailed periodically poled lithium niobate waveguide in a modified Sagnac loop. The measured joint spectral intensity of the generated entangled photon pairs is 7.27 THz (57.6 nm) at the full width at half-maximum (FWHM). The Hong-Ou-Mandel (HOM) interference of the generated broadband photons is measured with bandwidths of 5.35 THz (∼42.8 nm) and 100 GHz (∼0.8 nm), respectively. Visibility of 94.0±1.4% is achieved with the bandwidth of 5.35 THz, demonstrating good indistinguishability of the generated two-photon states, which could benefit the development of quantum microscopy and quantum synchronization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在电信波段产生宽带无差别双光子态。
不可分辨光子对源在量子显微镜、量子同步和量子计量等许多量子信息应用中都很有价值。基于级联和频产生(SFG)和自发参量下变频(SPDC)过程,我们提出并演示了一种在电信波段产生空间上分离的宽带不可分光子对的方案,该方案在改进的萨格纳克环路中仅使用一片光纤尾纤周期性极化铌酸锂波导。所测得的生成纠缠光子对的联合光谱强度在半最大全宽(FWHM)时为 7.27 THz (57.6 nm)。所产生的宽带光子的洪欧-曼德尔(HOM)干涉测量带宽分别为 5.35 太赫兹(∼42.8 纳米)和 100 千兆赫(∼0.8 纳米)。在带宽为 5.35 THz 时,可见度达到 94.0±1.4%,这表明所产生的双光子态具有良好的不可分性,有利于量子显微镜和量子同步的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
Class of nonlinear filtering and windowing methods for image processing and reconstruction. Simple and cost-effective method to measure the length of optical fibers. Clustering fast optimization strategy for holographic video displays. Single-crystal CsPbBr3-based vertical cavity surface emitting laser. Coherently averaged optical frequency comb spectroscopy with a single electro-optic modulator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1