Watt-scale near-diffraction-limited mid-infrared laser delivery by a chalcogenide anti-resonant fiber.

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2024-12-15 DOI:10.1364/OL.541805
Xian-Ge Wang, Xiaolin Liang, Kai Jiao, Shengchuang Bai, Xunsi Wang, Rongping Wang
{"title":"Watt-scale near-diffraction-limited mid-infrared laser delivery by a chalcogenide anti-resonant fiber.","authors":"Xian-Ge Wang, Xiaolin Liang, Kai Jiao, Shengchuang Bai, Xunsi Wang, Rongping Wang","doi":"10.1364/OL.541805","DOIUrl":null,"url":null,"abstract":"<p><p>We have developed an effective one-step extrusion method to prepare a nodeless chalcogenide hollow-core anti-resonance fiber, characterized by excellent symmetry and less requirements for drawing pressure in achieving the desired wall thickness. The resulting fiber exhibits excellent uniformity, with an ultra-large effective mode area of 21970 µm<sup>2</sup> and a low overlap factor of <i>η</i> = 0.03%. It can withstand an input power exceeding 10 W at 4.5 µm and maintain a stable output power of 1.2 W at an input power of 5.25 W, all while preserving a high beam quality with an M<sup>2</sup> value of 1.09. The output single-mode laser remains highly stable when the translation offset of the laser coupling into the fiber is less than 100 µm. The chalcogenide hollow-core fibers with watt-level mid-infrared laser delivery power and near-diffraction-limited beam quality can be used for practical applications in industry, medicine, and defense.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 24","pages":"6960-6963"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.541805","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We have developed an effective one-step extrusion method to prepare a nodeless chalcogenide hollow-core anti-resonance fiber, characterized by excellent symmetry and less requirements for drawing pressure in achieving the desired wall thickness. The resulting fiber exhibits excellent uniformity, with an ultra-large effective mode area of 21970 µm2 and a low overlap factor of η = 0.03%. It can withstand an input power exceeding 10 W at 4.5 µm and maintain a stable output power of 1.2 W at an input power of 5.25 W, all while preserving a high beam quality with an M2 value of 1.09. The output single-mode laser remains highly stable when the translation offset of the laser coupling into the fiber is less than 100 µm. The chalcogenide hollow-core fibers with watt-level mid-infrared laser delivery power and near-diffraction-limited beam quality can be used for practical applications in industry, medicine, and defense.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫族抗谐振光纤的瓦级近衍射限制中红外激光传输。
我们开发了一种有效的一步挤压法来制备无节硫化物空心芯抗共振光纤,该光纤具有良好的对称性和在达到所需壁厚时对拉伸压力的要求较少。得到的光纤均匀性好,有效模面积达21970µm2,重叠系数低,η = 0.03%。它可以承受4.5µm处超过10w的输入功率,在5.25 W的输入功率下保持1.2 W的稳定输出功率,同时保持高光束质量,M2值为1.09。当激光器耦合到光纤的平移偏移量小于100µm时,输出的单模激光器保持高度稳定。具有瓦特级中红外激光输出功率和近衍射限制光束质量的硫系空心芯光纤可用于工业、医药和国防等领域的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
Long-wave infrared upconversion detection based on a ZnGeP2 crystal. Low complexity exponential pruning learned digital back-propagation method for fiber nonlinearity mitigation. Light tunneling and anomalous reflection from the diffraction of complex annuli: modeling the forward light scattering by spherical particles. Line integral compressed ultrafast photography for large time-scale measurements. Moiré metasurface for dynamically tuned vector beams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1