Sesquiterpene lactone from Artemisia argyi inhibited cancer proliferation by inducing apoptosis and ferroptosis via key cell metabolism enzyme NDUFA4.

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL Phytomedicine Pub Date : 2024-12-05 DOI:10.1016/j.phymed.2024.156312
Ziling Wang, Zhouyuan Li, Rongsheng Ji, Wenjing Wang, Jing Li, Wenli Xu, Xiaoxuan Li, Xiaolong Yang, Hongzhi Du, Dahui Liu
{"title":"Sesquiterpene lactone from Artemisia argyi inhibited cancer proliferation by inducing apoptosis and ferroptosis via key cell metabolism enzyme NDUFA4.","authors":"Ziling Wang, Zhouyuan Li, Rongsheng Ji, Wenjing Wang, Jing Li, Wenli Xu, Xiaoxuan Li, Xiaolong Yang, Hongzhi Du, Dahui Liu","doi":"10.1016/j.phymed.2024.156312","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artemisia argyi is a well-known medicinal plant. A. argyi has been widely used in clinical for about 3000 years, owing to its extensive pharmacological activity. Among these, its anti-cancer properties are the most reported activity. However, its pharmacodynamic compounds remain unknown.</p><p><strong>Purpose: </strong>This study aimed to investigate the potential anti-cancer compounds in A. argyi and reveal its molecular mechanisms and targets.</p><p><strong>Methods: </strong>Firstly, A. argyi were extracted with 70 % ethanol, yielding A. argyi EtOH (AAE) crude extracts. AAE was extracted with Ethyl acetate and Butanol successively to yield A. argyi EtOAc (AAEA) and A. argyi Butanol (AAB) sub-fraction. And, AAE, AAEA, and AAB were prepared to assess their anti-cancer ability in vitro and in vivo. Then, the natural products were isolated from active sub-fraction via activity-oriented separation and identification. Meanwhile, all the compounds were evaluated the anti-cancer effect. The anti-proliferation mechanism of representative compounds was explored, based on programmed cell death. Moreover, 4D-data-independent (DIA) quantitative proteomic studies were performed to reveal the underlying targets and mechanism of representative compounds. Finally, the pharmacodynamic compound and key target interaction were identified by the evaluation of targets function, molecular docking, surface plasmon resonance (SPR) assay, and small interfering RNA. In addition, the toxicity of pharmacodynamic compounds were evaluated by in vitro and zebrafish model in vivo.</p><p><strong>Results: </strong>AAEA demonstrated stronger inhibitory effects than AAB on various cancer cell lines in vitro. And, AAEA sub-fraction effectively inhibited the tumor growth in vitro and in vivo. Subsequently, we isolated and identified 47 anti-cancer components from AAEA, especially 23 of which were isolated from A. argyi for the first time. Among them, 8 sesquiterpenes compounds showed strong anti-cancer activity. Moreover, compound 3 (moxartenolide) exhibited stronger induction of apoptosis and ferroptosis. Ultimately, a series of studies based on proteomics revealed that Moxartenolide inhibited cancer cell proliferation through the key enzyme NDUFA4. In addition, toxicological evaluation in vivo and in vitro demonstrated the safety of the candidate drug.</p><p><strong>Conclusion: </strong>These findings reveal the anti-cancer components of A. argyi based on activity-oriented separation and identification for the first time. Specially, Compound 3 (moxartenolide) inhibited cancer proliferation by inducing apoptosis and ferroptosis via key cell metabolism enzyme NDUFA4. Briefly, it suggests that A. argyi has the potential of anti-cancer drug development.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"136 ","pages":"156312"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2024.156312","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artemisia argyi is a well-known medicinal plant. A. argyi has been widely used in clinical for about 3000 years, owing to its extensive pharmacological activity. Among these, its anti-cancer properties are the most reported activity. However, its pharmacodynamic compounds remain unknown.

Purpose: This study aimed to investigate the potential anti-cancer compounds in A. argyi and reveal its molecular mechanisms and targets.

Methods: Firstly, A. argyi were extracted with 70 % ethanol, yielding A. argyi EtOH (AAE) crude extracts. AAE was extracted with Ethyl acetate and Butanol successively to yield A. argyi EtOAc (AAEA) and A. argyi Butanol (AAB) sub-fraction. And, AAE, AAEA, and AAB were prepared to assess their anti-cancer ability in vitro and in vivo. Then, the natural products were isolated from active sub-fraction via activity-oriented separation and identification. Meanwhile, all the compounds were evaluated the anti-cancer effect. The anti-proliferation mechanism of representative compounds was explored, based on programmed cell death. Moreover, 4D-data-independent (DIA) quantitative proteomic studies were performed to reveal the underlying targets and mechanism of representative compounds. Finally, the pharmacodynamic compound and key target interaction were identified by the evaluation of targets function, molecular docking, surface plasmon resonance (SPR) assay, and small interfering RNA. In addition, the toxicity of pharmacodynamic compounds were evaluated by in vitro and zebrafish model in vivo.

Results: AAEA demonstrated stronger inhibitory effects than AAB on various cancer cell lines in vitro. And, AAEA sub-fraction effectively inhibited the tumor growth in vitro and in vivo. Subsequently, we isolated and identified 47 anti-cancer components from AAEA, especially 23 of which were isolated from A. argyi for the first time. Among them, 8 sesquiterpenes compounds showed strong anti-cancer activity. Moreover, compound 3 (moxartenolide) exhibited stronger induction of apoptosis and ferroptosis. Ultimately, a series of studies based on proteomics revealed that Moxartenolide inhibited cancer cell proliferation through the key enzyme NDUFA4. In addition, toxicological evaluation in vivo and in vitro demonstrated the safety of the candidate drug.

Conclusion: These findings reveal the anti-cancer components of A. argyi based on activity-oriented separation and identification for the first time. Specially, Compound 3 (moxartenolide) inhibited cancer proliferation by inducing apoptosis and ferroptosis via key cell metabolism enzyme NDUFA4. Briefly, it suggests that A. argyi has the potential of anti-cancer drug development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青蒿中的倍半萜内酯通过关键的细胞代谢酶 NDUFA4 诱导细胞凋亡和铁变态反应,从而抑制癌症增殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称产品信息其他信息采购帮参考价格
索莱宝 hematoxylin
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
期刊最新文献
Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis. Dissecting the neuronal mechanisms of pinoresinol against methamphetamine addiction based on network and experimental pharmacology. Corrigendum "Enhancement of gemcitabine efficacy by K73-03 via epigenetically regulation of miR-421/SPINK1 in gemcitabine resistant pancreatic cancer cells" [Phytomedicine 2021:91:153711]. Corrigendum to "Bushen Huoxue Yiqi formula alleviates cardiac fibrosis in ischemic heart failure through SIRT1/Notch1 pathway-mediated EndMT" [Phytomedicine Journal 135 (2024) 156252]. Corrigendum to "Ilexchinene, a new seco-ursane triterpenoid from the leaves of Ilex chinensis with therapeutic effect on neuroinflammation by attenuating the MAPK/NF-κB signaling pathway" [Phytomedicine 121 (2023) 155110].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1