Annika Kolodziejczyk, Janine Hoffmann, Paula Cubillos, Mareike Albert
{"title":"Electroporation of Sliced Human Cortical Organoids for Studies of Gene Function.","authors":"Annika Kolodziejczyk, Janine Hoffmann, Paula Cubillos, Mareike Albert","doi":"10.3791/67598","DOIUrl":null,"url":null,"abstract":"<p><p>Human cortical organoids have become important tools for studying human brain development, neurodevelopmental disorders, and human brain evolution. Studies analyzing gene function by overexpression or knockout have been instrumental in animal models to provide mechanistic insights into the regulation of neocortex development. Here, we present a detailed protocol for CRISPR/Cas9-mediated acute gene knockout by electroporation of sliced human cortical organoids. The slicing of cortical organoids aids the identification of ventricle-like structures for injection and subsequent electroporation, making this a particularly well-suited model for acute genetic manipulation during human cortical development. We describe the design of guide RNAs and the validation of targeting efficiency in vitro and in cortical organoids. Electroporation of cortical organoids is performed at mid-neurogenic stages, enabling the targeting of most major cell classes in the developing neocortex, including apical radial glia, basal progenitor cells, and neurons. Taken together, the electroporation of sliced human cortical organoids represents a powerful technique to investigate gene function, gene regulation, and cell morphology during cortical development.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67598","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Human cortical organoids have become important tools for studying human brain development, neurodevelopmental disorders, and human brain evolution. Studies analyzing gene function by overexpression or knockout have been instrumental in animal models to provide mechanistic insights into the regulation of neocortex development. Here, we present a detailed protocol for CRISPR/Cas9-mediated acute gene knockout by electroporation of sliced human cortical organoids. The slicing of cortical organoids aids the identification of ventricle-like structures for injection and subsequent electroporation, making this a particularly well-suited model for acute genetic manipulation during human cortical development. We describe the design of guide RNAs and the validation of targeting efficiency in vitro and in cortical organoids. Electroporation of cortical organoids is performed at mid-neurogenic stages, enabling the targeting of most major cell classes in the developing neocortex, including apical radial glia, basal progenitor cells, and neurons. Taken together, the electroporation of sliced human cortical organoids represents a powerful technique to investigate gene function, gene regulation, and cell morphology during cortical development.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.